Skip to main content

Natural Phenolic Compounds as Therapeutic and Preventive Agents for Cerebral Amyloidosis

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 863))

Abstract

Epidemiological studies have suggested that diets rich in phenolic compounds may have preventive effects on the development of dementia or Alzheimer’s disease (AD). We investigated the effects of natural phenolic compounds, such as myricetin (Myr), rosmarinic acid (RA), ferulic acid (FA), curcumin (Cur) and nordihydroguaiaretic acid (NDGA) on the aggregation of amyloid β-protein (Aβ), using in vitro and in vivo models of cerebral Aβ amyloidosis. The in vitro studies revealed that these phenolic compounds efficiently inhibit oligomerization as well as fibril formation of Aβ through differential binding, whilst reducing Aβ oligomer-induced synaptic and neuronal toxicity. Furthermore, a transgenic mouse model fed orally with such phenolic compounds showed significant reduction of soluble Aβ oligomers as well as of insoluble Aβ deposition in the brain. These data, together with an updated review of the literature, indicate that natural phenolic compounds have anti-amyloidogenic effects on Aβ in addition to well-known anti-oxidative and anti-inflammatory effects, hence suggesting their potential as therapeutic and/or preventive agents for cerebral Aβ amyloidosis, including AD and cerebral amyloid angiopathy (CAA). Well-designed clinical trials or preventive interventions with natural phenolic compounds are necessary to establish their efficacy as disease-modifying agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Aβ:

amyloid β-protein

AD:

Alzheimer’s disease

ADAS-Cog:

Alzheimer’s Disease Assessment Scale – Cognitive Subscale

αS:

α-synuclein

ApoE:

apolipoprotein E

APP:

amyloid-β precursor protein

CAA:

cerebral amyloid angiopathy

CD:

circular dichroism

CSF:

cerebrospinal fluid

Cur:

curcumin

DLB:

dementia with Lewy bodies

EGCG:

(−)-epigallocatechin-3-galate

FA:

ferulic acid

fAβ:

Αβ fibrils

GSPE:

grape seed polyphenolic extract

LTD:

long-term depression

LTP:

long-term potentiation

MCI:

mild cognitive impairment

MMSE:

Mini-Mental State Examination

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

Myr:

myricetin

NDGA:

nordihydroguaiaretic acid

NMR:

nuclear magnetic resonance

PD:

Parkinson’s disease

PHF:

paired helical filament

PICUP:

photo-induced cross-linking of unmodified proteins

RA:

rosmarinic acid

References

  • Arntzen KA, Schirmer H, Wilsgaard T et al (2010) Moderate wine consumption is associated with better cognitive test results: a 7 year follow up of 5033 subjects in the Tromsø Study. Acta Neurol Scand 122(S190):23–29

    Google Scholar 

  • Barone JJ, Roberts HR (1996) Caffeine consumption. Food Chem Toxicol 34(1):119–129

    CAS  PubMed  Google Scholar 

  • Bastianetto S, Yao ZX, Papadopoulos V et al (2006) Neuroprotective effects of green and black teas and their catechin gallate esters against β-amyloid-induced toxicity. Eur J Neurosci 23(1):55–64

    PubMed  Google Scholar 

  • Baum L, Lam CWK, Cheung SK et al (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28(1):110–113

    PubMed  Google Scholar 

  • Bieschke J, Russ J, Friedrich RP et al (2010) EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc Natl Acad Sci U S A 107(17):7710–7715

    CAS  PubMed Central  PubMed  Google Scholar 

  • Camilleri A, Zarb C, Caruana M et al (2013) Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. Biochim Biophys Acta 1828(11):2532–2543

    CAS  PubMed  Google Scholar 

  • Capiralla H, Vingtdeux V, Zhao H et al (2012) Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem 120(3):461–472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caruana M, Neuner J, Högen T et al (2012) Polyphenolic compounds are novel protective agents against lipid membrane damage by α-synuclein aggregates in vitro. Biochim Biophys Acta 1818(11):2502–2510

    CAS  PubMed  Google Scholar 

  • Chakraborty S, Kumar S, Basu S (2011) Conformational transition in the substrate binding domain of β-secretase exploited by NMA and its implication in inhibitor recognition: BACE1-myricetin a case study. Neurochem Int 58(8):914–923

    CAS  PubMed  Google Scholar 

  • Cheng XR, Hau BY, Veloso AJ et al (2013) Surface plasmon resonance imaging of amyloid-β aggregation kinetics in the presence of epigallocatechin gallate and metals. Anal Chem 85(4):2049–2055

    CAS  PubMed  Google Scholar 

  • Choi YH, Hong SS, Shin YS et al (2010) Phenolic compounds from Pueraria lobata protect PC12 cells against Aβ-induced toxicity. Arch Pharm Res 33(10):1651–1654

    CAS  PubMed  Google Scholar 

  • Cimini A, Gentile R, D’Angelo B et al (2013) Cocoa powder triggers neuroprotective and preventive effects in a human Alzheimer’s disease model by modulating BDNF signaling pathway. J Cell Biochem 114(10):2209–2220

    CAS  PubMed Central  PubMed  Google Scholar 

  • ClinicalTrials.gov https://clinicaltrials.gov. Accessed 18 Aug 2014

  • Cui L, Zhang Y, Cao H et al (2013) Ferulic acid inhibits the transition of amyloid-β42 monomers to oligomers but accelerates the transition from oligomers to fibrils. J Alzheimers Dis 37(1):19–28

    CAS  PubMed  Google Scholar 

  • da Silva Bittencourt L, Zeidan-Chulia F, Yatsu FK et al (2014) Guarana (Paullinia cupana Mart.) prevents β-amyloid aggregation, generation of advanced glycation-end products (AGEs), and acrolein-induced cytotoxicity on human neuronal-like cells. Phytother Res 28:1615–1624

    Google Scholar 

  • Dai Q, Borenstein AR, Wu Y et al (2006) Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med 119(9):751–759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diomede L, Rigacci S, Romeo M et al (2013) Oleuropein aglycone protects transgenic C. elegans strains expressing Aβ42 by reducing plaque load and motor deficit. PLoS One 8(3):e58893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ehrnhoefer DE, Bieschke J, Boeddrich A et al (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15(6):558–566

    CAS  PubMed  Google Scholar 

  • Engelhart MJ, Geerlings MI, Ruitenberg A et al (2002) Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 287(24):3223–3229

    CAS  PubMed  Google Scholar 

  • Eskelinen MH, Ngandu T, Tuomilehto J et al (2009) Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis 16(1):85–91

    CAS  PubMed  Google Scholar 

  • Féart C, Samieri C, Rondeau V et al (2009) Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA 302(6):638–648

    PubMed Central  PubMed  Google Scholar 

  • Feng Y, Yang SG, Du X et al (2009) Ellagic acid promotes Aβ42 fibrillization and inhibits Aβ42-induced neurotoxicity. Biochem Biophys Res Commun 390(4):1250–1254

    CAS  PubMed  Google Scholar 

  • Feng X, Liang N, Zhu D et al (2013) Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS One 8(3):e59888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernández-Fernández L, Comes G, Bolea I et al (2012) LMN diet, rich in polyphenols and polyunsaturated fatty acids, improves mouse cognitive decline associated with aging and Alzheimer’s disease. Behav Brain Res 228(2):261–271

    PubMed  Google Scholar 

  • Fuentealba J, Dibarrart AJ, Fuentes-Fuentes MC et al (2011) Synaptic failure and adenosine triphosphate imbalance induced by amyloid-β aggregates are prevented by blueberry-enriched polyphenols extract. J Neurosci Res 89(9):1499–1508

    CAS  PubMed  Google Scholar 

  • Fuentealba J, Dibarrart A, Saez-Orellana F et al (2012) Synaptic silencing and plasma membrane dyshomeostasis induced by amyloid-β peptide are prevented by Aristotelia chilensis enriched extract. J Alzheimers Dis 31(4):879–889

    PubMed  Google Scholar 

  • Ganguli M, Chandra V, Kamboh MI et al (2000) Apolipoprotein E polymorphism and Alzheimer disease: the Indo-US Cross-National Dementia Study. Arch Neurol 57(6):824–830

    CAS  PubMed  Google Scholar 

  • Gauci AJ, Caruana M, Giese A et al (2011) Identification of polyphenolic compounds and black tea extract as potent inhibitors of lipid membrane destabilization by Aβ42 aggregates. J Alzheimers Dis 27(4):767–779

    CAS  PubMed  Google Scholar 

  • Ge JF, Qiao JP, Qi CC et al (2012) The binding of resveratrol to monomer and fibril amyloid beta. Neurochem Int 61(7):1192–1201

    CAS  PubMed  Google Scholar 

  • Grelle G, Otto A, Lorenz M et al (2011) Black tea theaflavins inhibit formation of toxic amyloid-β and α-synuclein fibrils. Biochemistry 50(49):10624–10636

    CAS  PubMed  Google Scholar 

  • Grossi C, Rigacci S, Ambrosini S et al (2013) The polyphenol oleuropein aglycone protects TgCRND8 mice against Aβ plaque pathology. PLoS One 8(8):e71702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grossi C, Ed Dami T, Rigacci S et al (2014) Employing Alzheimer disease animal models for translational research: focus on dietary components. Neurodegener Dis 13(2–3):131–134

    CAS  PubMed  Google Scholar 

  • Hamaguchi T, Ono K, Murase A et al (2009) Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-β aggregation pathway. Am J Pathol 175(6):2557–2565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartman RE, Shah A, Fagan AM et al (2006) Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol Dis 24(3):506–515

    CAS  PubMed  Google Scholar 

  • He Y, Cui J, Lee JC et al (2011) Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (−)-epigallocatechin-3-gallate. ASN Neuro 3(1):e00050

    PubMed Central  PubMed  Google Scholar 

  • Hirohata M, Ono K, Takasaki J et al (2012) Anti-amyloidogenic effects of soybean isoflavones in vitro: fluorescence spectroscopy demonstrating direct binding to Aβ monomers, oligomers and fibrils. Biochim Biophys Acta 1822(8):1316–1324

    CAS  PubMed  Google Scholar 

  • Ho L, Chen LH, Wang J et al (2009a) Heterogeneity in red wine polyphenolic contents differentially influences Alzheimer’s disease-type neuropathology and cognitive deterioration. J Alzheimers Dis 16(1):59–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ho L, Yemul S, Wang J et al (2009b) Grape seed polyphenolic extract as a potential novel therapeutic agent in tauopathies. J Alzheimers Dis 16(2):433–439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ho L, Ferruzzi MG, Janle EM et al (2013) Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer’s disease. FASEB J 27(2):769–781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoppe JB, Coradini K, Frozza RL et al (2013) Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol Learn Mem 106:134–144

    CAS  PubMed  Google Scholar 

  • Joshi G, Perluigi M, Sultana R et al (2006) In vivo protection of synaptosomes by ferulic acid ethyl ester (FAEE) from oxidative stress mediated by 2,2-azobis(2-amidino-propane)dihydrochloride (AAPH) or Fe2+/H2O2: insight into mechanisms of neuroprotection and relevance to oxidative stress-related neurodegenerative disorders. Neurochem Int 48(4):318–327

    CAS  PubMed  Google Scholar 

  • Karuppagounder SS, Pinto JT, Xu H et al (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 54(2):111–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khokhar S, Magnusdottir SG (2002) Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J Agric Food Chem 50(3):565–570

    CAS  PubMed  Google Scholar 

  • Kostomoiri M, Fragkouli A, Sagnou M et al (2013) Oleuropein, an anti-oxidant polyphenol constituent of olive promotes α-secretase cleavage of the amyloid precursor protein (AβPP). Cell Mol Neurobiol 33(1):147–154

    CAS  PubMed  Google Scholar 

  • Ksiezak-Reding H, Ho L, Santa-Maria I et al (2012) Ultrastructural alterations of Alzheimer’s disease paired helical filaments by grape seed-derived polyphenols. Neurobiol Aging 33(7):1427–1439

    CAS  PubMed  Google Scholar 

  • Kuriyama S, Hozawa A, Ohmori K et al (2006) Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya project1–3. Am J Clin Nutr 83(2):355–361

    CAS  PubMed  Google Scholar 

  • Larson ME, Lesne SE (2012) Soluble Aβ oligomer production and toxicity. J Neurochem 120(S1):125–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laurin D, Masaki KH, Foley DJ et al (2004) Midlife dietary intake of antioxidants and risk of late-life incident dementia: the Honolulu-Asia Aging Study. Am J Epidemiol 159(10):959–967

    PubMed  Google Scholar 

  • Levites Y, Amit T, Mandel S et al (2003) Neuroprotection and neurorescue against Aβ toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB J 17(8):952–954

    CAS  PubMed  Google Scholar 

  • Lim GP, Chu T, Yang F et al (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21(21):8370–8377

    CAS  PubMed  Google Scholar 

  • Lindsay J, Laurin D, Verreault R et al (2002) Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156(5):445–453

    PubMed  Google Scholar 

  • Liu P, Kemper LJ, Wang J et al (2011) Grape seed polyphenolic extract specifically decreases aβ*56 in the brains of Tg2576 mice. J Alzheimers Dis 26(4):657–666

    CAS  PubMed  Google Scholar 

  • Lorenzen N, Nielsen SB, Yoshimura Y et al (2014) How epigallocatechin gallate can inhibit α-Synuclein oligomer toxicity in vitro. J Biol Chem 289(31):21299–21310

    PubMed  Google Scholar 

  • Luchsinger JA, Tang MX, Siddiqui M et al (2004) Alcohol intake and risk of dementia. J Am Geriatr Soc 52(4):540–546

    PubMed  Google Scholar 

  • Mandel S, Maor G, Youdim MBH (2004) Iron and α-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (−)-epigallocatechin-3-gallate. J Mol Neurosci 24(3):401–416

    CAS  PubMed  Google Scholar 

  • Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J Biol Chem 280(45):37377–37382

    CAS  PubMed  Google Scholar 

  • Marchiani A, Mammi S, Siligardi G et al (2013) Small molecules interacting with α-synuclein: antiaggregating and cytoprotective properties. Amino Acids 45(2):327–338

    CAS  PubMed  Google Scholar 

  • Martínez-Lapiscina EH, Clavero P, Toledo E et al (2013) Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry 84(12):1318–1325

    PubMed  Google Scholar 

  • Masuda M, Suzuki N, Taniguchi S et al (2006) Small molecule inhibitors of α-synuclein filament assembly. Biochemistry 45(19):6085–6094

    CAS  PubMed  Google Scholar 

  • Masuda M, Hasegawa M, Nonaka T et al (2009) Inhibition of α-synuclein fibril assembly by small molecules: analysis using epitope-specific antibodies. FEBS Lett 583(4):787–791

    CAS  PubMed  Google Scholar 

  • Mehlig K, Skoog I, Guo X et al (2008) Alcoholic beverages and incidence of dementia: 34-year follow-up of the prospective population study of women in Göteborg. Am J Epidemiol 167(6):684–691

    CAS  PubMed  Google Scholar 

  • Mori T, Rezai-Zadeh K, Koyama N et al (2012) Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J Biol Chem 287(9):6912–6927

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mori T, Koyama N, Guillot-Sestier MV et al (2013) Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and alzheimer-like pathology in transgenic mice. PLoS One 8(2):e55774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ng TP, Chiam PC, Lee T et al (2006) Curry consumption and cognitive function in the elderly. Am J Epidemiol 164(9):898–906

    PubMed  Google Scholar 

  • Noguchi-Shinohara M, Yuki S, Dohmoto C et al (2014) Consumption of green tea, but not black tea or coffee, is associated with reduced risk of cognitive decline. PLoS One 9(5):e96013

    PubMed Central  PubMed  Google Scholar 

  • Obregon DF, Rezai-Zadeh K, Bai Y et al (2006) ADAM10 activation is required for green tea (−)-epigallocatechin-3-gallate-induced α-secretase cleavage of amyloid precursor protein. J Biol Chem 281(24):16419–16427

    CAS  PubMed  Google Scholar 

  • Ogawa K, Tsubono Y, Nishino Y et al (2002) Dietary sources of nutrient consumption in a rural Japanese population. J Epidemiol 12(1):1–8

    PubMed  Google Scholar 

  • Ono K, Yamada M (2006) Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for α-synuclein fibrils in vitro. J Neurochem 97(1):105–115

    CAS  PubMed  Google Scholar 

  • Ono K, Hasegawa K, Yoshiike Y et al (2002) Nordihydroguaiaretic acid potently breaks down pre-formed Alzheimer’s β-amyloid fibrils in vitro. J Neurochem 81(3):434–440

    CAS  PubMed  Google Scholar 

  • Ono K, Yoshiike Y, Takashima A et al (2003) Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 87(1):172–181

    CAS  PubMed  Google Scholar 

  • Ono K, Hasegawa K, Naiki H et al (2004a) Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s β-amyloid fibrils in vitro. Biochim Biophys Acta 1690(3):193–202

    CAS  PubMed  Google Scholar 

  • Ono K, Hasegawa K, Naiki H et al (2004b) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J Neurosci Res 75(6):742–750

    CAS  PubMed  Google Scholar 

  • Ono K, Hirohata M, Yamada M (2005) Ferulic acid destabilizes preformed β-amyloid fibrils in vitro. Biochem Biophys Res Commun 336(2):444–449

    CAS  PubMed  Google Scholar 

  • Ono K, Hasegawa K, Naiki H et al (2006a) Anti-parkinsonian agents have anti-amyloidogenic activity for Alzheimer’s β-amyloid fibrils in vitro. Neurochem Int 48(4):275–285

    CAS  PubMed  Google Scholar 

  • Ono K, Hirohata M, Yamada M (2006b) α-Lipoic acid exhibits anti-amyloidogenicity for β-amyloid fibrils in vitro. Biochem Biophys Res Commun 341(4):1046–1052

    CAS  PubMed  Google Scholar 

  • Ono K, Condron MM, Ho L et al (2008) Effects of grape seed-derived polyphenols on amyloid β-protein self-assembly and cytotoxicity. J Biol Chem 283(47):32176–32187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ono K, Li L, Takamura Y et al (2012) Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding. J Biol Chem 287(18):14631–14643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orgogozo JM, Dartigues JF, Lafont S et al (1997) Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev Neurol 153(3):185–192

    CAS  PubMed  Google Scholar 

  • Palhano FL, Lee J, Grimster NP et al (2013) Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. J Am Chem Soc 135(20):7503–7510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patil SP, Tran N, Geekiyanage H et al (2013) Curcumin-induced upregulation of the anti-tau cochaperone BAG2 in primary rat cortical neurons. Neurosci Lett 554:121–125

    CAS  PubMed  Google Scholar 

  • Peterson J, Dwyer J, Bhagwat S et al (2005) Major flavonoids in dry tea. J Food Compos Anal 18(6):487–501

    CAS  Google Scholar 

  • Porquet D, Griñán-Ferré C, Ferrer I et al (2014) Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J Alzheimers Dis 42:1209–1220

    Google Scholar 

  • Psaltopoulou T, Sergentanis TN, Panagiotakos DB et al (2013) Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann Neurol 74(4):580–591

    PubMed  Google Scholar 

  • Ray B, Bisht S, Maitra A et al (2011) Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurcTM) in the neuronal cell culture and animal model: implications for Alzheimer’s disease. J Alzheimers Dis 23(1):61–77

    CAS  PubMed Central  PubMed  Google Scholar 

  • Regitz C, Marie Dußling L, Wenzel U (2014) Amyloid-beta (Aβ1–42)-induced paralysis in Caenorhabditis elegans is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Mol Nutr Food Res 58:1931–1940

    Google Scholar 

  • Rezai-Zadeh K, Shytle D, Sun N et al (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25(38):8807–8814

    CAS  PubMed  Google Scholar 

  • Rezai-Zadeh K, Arendash GW, Hou H et al (2008) Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res 1214:177–187

    CAS  PubMed  Google Scholar 

  • Richard T, Papastamoulis Y, Waffo-Teguo P et al (2013) 3D NMR structure of a complex between the amyloid beta peptide (1–40) and the polyphenol ε-viniferin glucoside: implications in Alzheimer’s disease. Biochim Biophys Acta 1830(11):5068–5074

    CAS  PubMed  Google Scholar 

  • Rigacci S, Guidotti V, Bucciantini M et al (2011) Aβ(1–42) aggregates into non-toxic amyloid assemblies in the presence of the natural polyphenol oleuropein aglycon. Curr Alzheimer Res 8(8):841–852

    CAS  PubMed  Google Scholar 

  • Ringman JM, Frautschy SA, Teng E et al (2012) Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res Ther 4(5):43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ritchie K, Carrière I, de Mendonça A et al (2007) The neuroprotective effects of caffeine: a prospective population study (the Three City Study). Neurology 69(6):536–545

    CAS  PubMed  Google Scholar 

  • Rivière C, Richard T, Quentin L et al (2007) Inhibitory activity of stilbenes on Alzheimer’s β-amyloid fibrils in vitro. Bioorg Med Chem 15(2):1160–1167

    PubMed  Google Scholar 

  • Rivière C, Delaunay JC, Immel F et al (2009) The polyphenol piceid destabilizes preformed amyloid fibrils and oligomers in vitro: hypothesis on possible molecular mechanisms. Neurochem Res 34(6):1120–1128

    PubMed  Google Scholar 

  • Rushworth JV, Griffiths HH, Watt NT et al (2013) Prion protein-mediated toxicity of amyloid-β oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem 288(13):8935–8951

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santa-Maria I, Diaz-Ruiz C, Ksiezak-Reding H et al (2012) GSPE interferes with tau aggregation in vivo: implication for treating tauopathy. Neurobiol Aging 33(9):2072–2081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Savaskan E, Olivieri G, Meier F et al (2003) Red wine ingredient resveratrol protects from β-amyloid neurotoxicity. Gerontology 49(6):380–383

    CAS  PubMed  Google Scholar 

  • Scarmeas N, Stern Y, Tang M et al (2006) Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 59(6):912–921

    PubMed Central  PubMed  Google Scholar 

  • Scarmeas N, Stern Y, Mayeux R et al (2009) Mediterranean diet and mild cognitive impairment. Arch Neurol 66(2):216–225

    PubMed Central  PubMed  Google Scholar 

  • Shoval H, Weiner L, Gazit E et al (2008) Polyphenol-induced dissociation of various amyloid fibrils results in a methionine-independent formation of ROS. Biochim Biophys Acta 1784(11):1570–1577

    CAS  PubMed  Google Scholar 

  • Singh B, Parsaik AK, Mielke MM et al (2014) Association of Mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 39(2):271–282

    PubMed Central  PubMed  Google Scholar 

  • Sinha S, Du Z, Maiti P et al (2012) Comparison of three amyloid assembly inhibitors: the sugar scyllo-inositol, the polyphenol epigallocatechin gallate, and the molecular tweezer CLR01. ACS Chem Neurosci 3(6):451–458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Solberg NO, Chamberlin R, Vigil JR et al (2014) Optical and SPION-enhanced MR imaging shows that trans-stilbene inhibitors of NF-κB concomitantly lower Alzheimer’s disease plaque formation and microglial activation in AβPP/PS-1 transgenic mouse brain. J Alzheimers Dis 40(1):191–212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Solfrizzi V, D’Introno A, Colacicco AM et al (2007) Alcohol consumption, mild cognitive impairment, and progression to dementia. Neurology 68(21):1790–1799

    CAS  PubMed  Google Scholar 

  • Sultana R, Ravagna A, Mohmmad-Abdul H et al (2005) Ferulic acid ethyl ester protects neurons against amyloid β- peptide(1–42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J Neurochem 92(4):749–758

    CAS  PubMed  Google Scholar 

  • Taniguchi S, Suzuki N, Masuda M et al (2005) Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. J Biol Chem 280(9):7614–7623

    CAS  PubMed  Google Scholar 

  • Thapa A, Woo ER, Chi E et al (2011) Biflavonoids are superior to monoflavonoids in inhibiting amyloid-β toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures. Biochemistry 50(13):2445–2455

    CAS  PubMed  Google Scholar 

  • Truelsen T, Thudium D, Grønbaek M (2002) Amount and type of alcohol and risk of dementia: the Copenhagen City Heart Study. Neurology 59(9):1313–1319

    PubMed  Google Scholar 

  • van Gelder BM, Buijsse B, Tijhuis M et al (2007) Coffee consumption is inversely associated with cognitive decline in elderly European men: the FINE Study. Eur J Clin Nutr 61(2):226–232

    PubMed  Google Scholar 

  • Vepsäläinen S, Koivisto H, Pekkarinen E et al (2013) Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J Nutr Biochem 24(1):360–370

    PubMed  Google Scholar 

  • Vingtdeux V, Giliberto L, Zhao H et al (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J Biol Chem 285(12):9100–9113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Ho L, Zhao Z et al (2006) Moderate consumption of Cabernet Sauvignon attenuates Aβ neuropathology in a mouse model of Alzheimer’s disease. FASEB J 20(13):2313–2320

    CAS  PubMed  Google Scholar 

  • Wang J, Ho L, Zhao W et al (2008) Grape-derived polyphenolics prevent Aβ oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci 28(25):6388–6392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Santa-Maria I, Ho L et al (2010) Grape derived polyphenols attenuate tau neuropathology in a mouse model of Alzheimer’s disease. J Alzheimers Dis 22(2):653–661

    PubMed  Google Scholar 

  • Wang J, Ferruzzi MG, Ho L et al (2012) Brain-targeted proanthocyanidin metabolites for Alzheimer’s disease treatment. J Neurosci 32(15):5144–5150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Varghese M, Ono K et al (2014) Cocoa extracts reduce oligomerization of amyloid-β: implications for cognitive improvement in Alzheimer’s disease. J Alzheimers Dis 41(2):643–650

    CAS  PubMed  Google Scholar 

  • Wong DY, Musgrave IF, Harvey BS et al (2013) Açaí (Euterpe oleraceae Mart.) berry extract exerts neuroprotective effects against β-amyloid exposure in vitro. Neurosci Lett 556:221–226

    CAS  PubMed  Google Scholar 

  • Xu PX, Wang SW, Yu XL et al (2014) Rutin improves spatial memory in Alzheimer’s disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res 264:173–180

    CAS  PubMed  Google Scholar 

  • Yang F, Lim GP, Begum AN et al (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280(7):5892–5901

    CAS  PubMed  Google Scholar 

  • Yao J, Gao X, Sun W et al (2013) Molecular hairpin: a possible model for inhibition of tau aggregation by tannic acid. Biochemistry 52(11):1893–1902

    CAS  PubMed  Google Scholar 

  • Yoshida H, Meng P, Matsumiya T et al (2014) Carnosic acid suppresses the production of amyloid-β 1–42 and 1–43 by inducing an α-secretase TACE/ADAM17 in U373MG human astrocytoma cells. Neurosci Res 79:83–93

    CAS  PubMed  Google Scholar 

  • Zhang SQ, Sawmiller D, Li S et al (2013a) Octyl gallate markedly promotes anti-amyloidogenic processing of APP through estrogen receptor-mediated ADAM10 activation. PLoS One 8(8), e71913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang T, Zhang J, Derreumaux P et al (2013b) Molecular mechanism of the inhibition of EGCG on the Alzheimer Aβ1–42 dimer. J Phys Chem B 117(15):3993–4002

    CAS  PubMed  Google Scholar 

  • Zhu X, Ye L, Ge H et al (2013) Hopeahainol A attenuates memory deficits by targeting β-amyloid in APP/PS1 transgenic mice. Aging Cell 12(1):85–92

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported in part by a Grain-in-Aid Scientific Research (MY, KO, TH, MN-S) and a grant from the Hokuriku Innovation Cluster for Health Science (MY) from the Science of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a Grant for Health and Labour Sciences Research (the Amyloidosis Research Committee) from the Ministry of Health, Labour, and Welfare, Japan (MY). The authors thank Ms. Etsuko Tsujiguchi for her excellent secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahito Yamada M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yamada, M., Ono, K., Hamaguchi, T., Noguchi-Shinohara, M. (2015). Natural Phenolic Compounds as Therapeutic and Preventive Agents for Cerebral Amyloidosis. In: Vassallo, N. (eds) Natural Compounds as Therapeutic Agents for Amyloidogenic Diseases. Advances in Experimental Medicine and Biology, vol 863. Springer, Cham. https://doi.org/10.1007/978-3-319-18365-7_4

Download citation

Publish with us

Policies and ethics