Necessarily Maybe: Quantifiers, Modality and Vagueness

  • Alessandro TorzaEmail author
Part of the Synthese Library book series (SYLI, volume 373)


Languages involving modalities and languages involving vagueness have each been thoroughly studied. On the other hand, virtually nothing has been said about the interaction of modality and vagueness. This paper aims to start filling that gap. Section 17.1 is a discussion of various possible sources of vague modality. Section 17.2 puts forward a model theory for a quantified language with operators for modality and vagueness. The model theory is followed by a discussion of the resulting logic. In Sect. 17.3, the framework will permit us to address a puzzle raised by Elizabeth Barnes and Robert Williams.


Modal Language Counterpart Relation Vague Predicate Counterpart Theory Metaphysical Modality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barnes, E., and J.R.G. Williams. 2011. A theory of metaphysical indeterminacy. In Oxford studies in metaphysics, vol. 6, ed. K. Bennett and D. Zimmerman. Oxford: Oxford University Press.Google Scholar
  2. 2.
    Divers, J. 2002. Possible worlds. London: Routledge.Google Scholar
  3. 3.
    Forrest, P., and D. Armstrong. 1984. An argument against David Lewis’ theory of possible worlds. Australasian Journal of Philosophy 62: 164–168.CrossRefGoogle Scholar
  4. 4.
    Gabbay, D., et al. eds. 2003. Many-dimensional modal logics: Theory and applications. Amsterdam: Elsevier.Google Scholar
  5. 5.
    Gibbard, A. 1975. Contingent identity. Journal of Philosophical Logic 4(2): 187–221.CrossRefGoogle Scholar
  6. 6.
    Hale, B. 1996. Absolute necessities. Noûs, 30, Supplement: Philosophical Perspectives 10: 93–117.Google Scholar
  7. 7.
    Hazen, A. 1979. Counterpart-theoretic semantics for modal logic. The Journal of Philosophy 76(6): 319–338.CrossRefGoogle Scholar
  8. 8.
    Keefe, R. 2000. Theories of vagueness. Cambridge: Cambridge University Press.Google Scholar
  9. 9.
    Lewis, D. 1968. Counterpart theory and quantified modal logic. The Journal of Philosophy 65(5): 113–126.CrossRefGoogle Scholar
  10. 10.
    Lewis, D. 1971. Counterparts of persons and their bodies. The Journal of Philosophy 68(7): 203–211.CrossRefGoogle Scholar
  11. 11.
    Lewis, D. 1986. On the plurality of worlds. Oxford/New York: Blackwell.Google Scholar
  12. 12.
    Nolan, D. 1996. Recombination unbound. Philosophical Studies 84(2/3): 239–262.CrossRefGoogle Scholar
  13. 13.
    Nolt, J. 2006. Free logics. In Philosophy of logic, Handbook of the philosophy of science, ed. D. Jacquette. Amsterdam: North Holland.Google Scholar
  14. 14.
    Schaffer, J. 2010. The internal relatedness of all things. Mind 119(474): 341–376.CrossRefGoogle Scholar
  15. 15.
    Segerberg, K. 1973. Two dimensional modal logic. Journal of Philosophical Logic 2(1): 77–96.CrossRefGoogle Scholar
  16. 16.
    Sider, T. 2003. Against vague existence. Philosophical Studies 114(1): 135–146.CrossRefGoogle Scholar
  17. 17.
    Stalnaker, R. 2003. Counterparts and identity. In Ways a world might be, 111–132. Oxford/New York: Oxford University Press.CrossRefGoogle Scholar
  18. 18.
    Thomason, R. 2002. Combinations of tense and modality. In Handbook of philosophical logic, vol. 7, ed. D. Gabbay and F. Guenther. Dordrecht: Kluwer.Google Scholar
  19. 19.
    Torza, A. Forth. Vague existence. In Oxford studies in metaphysics, ed. K. Bennett and D. Zimmerman. Oxford: Oxford University Press.Google Scholar
  20. 20.
    Williamson, T. 1994. Vagueness. London: Routledge.Google Scholar
  21. 21.
    Williamson, T. 1999. On the structure of higher-order vagueness. Mind 108(429): 127–143.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Instituto de Investigaciones Filosóficas, UNAMCircuito Mario de la Cueva, Ciudad UniversitariaMéxico D.F.Mexico

Personalised recommendations