Absolute Generality and Semantic Pessimism

  • J. P. StuddEmail author
Part of the Synthese Library book series (SYLI, volume 373)


Semantic pessimism has sometimes been used to argue in favour of absolutism about quantifiers, the view, to a first approximation, that quantifiers in natural or artificial languages sometimes range over a domain comprising absolutely everything. Williamson argues that, by her lights, the relativist who opposes this view cannot state the semantics she wishes to attach to quantifiers in a suitable metalanguage. This chapter argues that this claim is sensitive to both the version of relativism in question and the sort of semantic theory in play. Restrictionist and expansionist variants of relativism should be distinguished. While restrictionists face the difficulties Williamson presses in stating the truth-conditions she wishes to ascribe to quantified sentences in the familiar quasi-homophonic style associated with Tarski and Davidson, the expansionist does not. In fact, not only does the expansionist fare no worse than the absolutist with respect to semantic optimism, for certain styles of semantic theory, she fares better. In the case of the extensional semantics of so called ‘generalised quantifiers’, famously applied to natural language by Barwise and Cooper, it is argued that expansionists enjoy optimism and absolutists face a significant measure of pessimism.


Semantic Theory Object Language Unary Predicate Entire Universe Extensional Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bach, K. 2000. Quantification, qualification and context: A reply to Stanley and Szabo. Mind & Language 15(2–3): 262–283.CrossRefGoogle Scholar
  2. 2.
    Barwise, J., and R. Cooper. 1981. Generalized quantifiers and natural language. Linguistics and Philosophy 4(2): 159–219.CrossRefGoogle Scholar
  3. 3.
    Boolos, G. 1984. To be is to be a value of a variable (or to be some values of some variables). The Journal of Philosophy 81(8): 430–449, reprinted in Boolos [6].Google Scholar
  4. 4.
    Boolos, G. 1985. Nominalist platonism. The Philosophical Review 94(3): 327–344, reprinted in Boolos [6].Google Scholar
  5. 5.
    Boolos, G. 1993. Whence the contradiction? Aristotelian Society Supplementary Volume 67: 213–233, reprinted in Boolos [6].Google Scholar
  6. 6.
    Boolos, G. 1998. Logic, logic, and logic. Cambridge: Harvard Univesity Press.Google Scholar
  7. 7.
    Cartwright, R. 1994. Speaking of everything. Noûs 28(1): 1–20.CrossRefGoogle Scholar
  8. 8.
    Davidson, D. 1967. Truth and meaning. Synthese 17(1): 304–323.CrossRefGoogle Scholar
  9. 9.
    Dummett, M. 1983. Frege: Philosophy of language, 2nd ed. London: Duckworth.Google Scholar
  10. 10.
    Dummett, M. 1991. Frege: Philosophy of mathematics. London: Duckworth.Google Scholar
  11. 11.
    Evans, G., and J. Altham. 1973. The causal theory of names. Proceedings of the Aristotelian Society, Supplementary Volumes 47: 187–225.Google Scholar
  12. 12.
    Fine, K. 2006. Relatively unrestricted quantification. In Absolute generality, ed. A. Rayo and G. Uzquiano, 20–44. Oxford: Clarendon Press.Google Scholar
  13. 13.
    Frege, G. 1891. Funktion und Begriff. English edition: 1980. Function and Concept. Translations from the Philosophical Writings of Gottlob Frege, 3rd ed, ed. P. Geach and M. Black. Oxford: Blackwell.Google Scholar
  14. 14.
    Glanzberg, M. 2004. Quantification and realism. Philosophy and Phenomenological Research 69(3): 541–572.CrossRefGoogle Scholar
  15. 15.
    Glanzberg, M. 2006. Context and unrestricted quantification. In Absolute generality, ed. A. Rayo and G. Uzquiano, 45–74. Oxford: Clarendon Press.Google Scholar
  16. 16.
    Hellman, G. 2006. Against ‘absolutely everything’! In Absolute generality, ed. A. Rayo and G. Uzquiano, 75–97. Oxford: Clarendon Press.Google Scholar
  17. 17.
    Keenan, E. 1984. A Boolean approach to semantics. In Truth, interpretation and information, ed. J.A.G. Groenendijk, T.M.V. Janssen, and M.J.B. Stockhof, 65–98. Dordrecht: Foris.Google Scholar
  18. 18.
    Keenan, E., and J. Stavi. 1986. A semantic characterization of natural language determiners. Linguistics and Philosophy 9(3): 253–326.CrossRefGoogle Scholar
  19. 19.
    Lavine, S. 2006. Something about everything: Universal quantification in the universal sense of universal quantification. In Absolute generality, ed. A. Rayo and G. Uzquiano, 98–148. Oxford: Clarendon Press.Google Scholar
  20. 20.
    Lewis, D.K. 1970. General semantics. Synthese 22(1): 18–67.CrossRefGoogle Scholar
  21. 21.
    Lewis, D.K. 1991. Parts of classes. Oxford: Basil Blackwell.Google Scholar
  22. 22.
    Lindström, P. 1966. First order predicate logic with generalized quantifiers. Theoria 32: 186–195.Google Scholar
  23. 23.
    Linnebo, Ø. 2006. Sets, properties, and unrestricted quantification. In Absolute generality, ed. A. Rayo and G. Uzquiano, 149–179. Oxford: Clarendon Press.Google Scholar
  24. 24.
    Linnebo, Ø. 2013. Plural quantification. In The Stanford encyclopedia of philosophy, Spring 2013 ed, E. Zalta. Stanford: Center for the Study of Language and Information.Google Scholar
  25. 25.
    Linnebo, Ø., and D. Nicolas. 2008. Superplurals in English. Analysis 68(3): 186–197.CrossRefGoogle Scholar
  26. 26.
    Linnebo, Ø., and A. Rayo. 2012. Hierarchies ontological and ideological. Mind 121(482): 269–308.CrossRefGoogle Scholar
  27. 27.
    McGee, V. 1997. How we learn mathematical language. The Philosophical Review 106(1): 35–68.CrossRefGoogle Scholar
  28. 28.
    McGee, V. 2000. Everything. In Between logic and intuition: Essays in honor of Charles Parsons, ed. G. Sher and R. Tieszen. Cambridge: Cambridge University Press.Google Scholar
  29. 29.
    McGee, V. 2006. There’s a rule for everything. In Absolute generality, ed. A. Rayo and G. Uzquiano, 179–202. Oxford: Clarendon Press.Google Scholar
  30. 30.
    Mostowski, A. 1957. On a generalization of quantifiers. Fundamenta Mathematicae 44(1): 12–36.Google Scholar
  31. 31.
    Parsons, C. 1977. What is the iterative conception of set? In Proceedings of the 5th international congress of logic, methodology and philosophy of science 1975, Part I: Logic, foundations of mathematics, and computability theory, ed. R. Butts and J. Hintikka. Dordrecht: Reidel.Google Scholar
  32. 32.
    Parsons, C. 2006. The problem of absolute universality. In Absolute generality, ed. A. Rayo and G. Uzquiano, 203–219. Oxford: Clarendon Press.Google Scholar
  33. 33.
    Peters, S., and D. Westerståhl. 2006. Quantifiers in language and logic. Oxford: Clarendon Press.Google Scholar
  34. 34.
    Quine, W.V.O. 1973. The roots of reference. La Salle: Open Court.Google Scholar
  35. 35.
    Quine, W.V.O. 1974. Methods of logic. London: Routledge and Keegan Paul.Google Scholar
  36. 36.
    Rayo, A. 2002. Word and objects. Noûs 36(3): 436–464.CrossRefGoogle Scholar
  37. 37.
    Rayo, A. 2006. Beyond plurals. In Absolute generality, ed. A. Rayo and G. Uzquiano, 220–254. Oxford: Clarendon Press.Google Scholar
  38. 38.
    Rayo, A., and G. Uzquiano. 1999. Toward a theory of second-order consequence. Notre Dame Journal of Formal Logic 40(3): 315–325.CrossRefGoogle Scholar
  39. 39.
    Rayo, A., and G. Uzquiano (ed.) 2006. Absolute generality. Oxford: Oxford University Press.Google Scholar
  40. 40.
    Russell, B. 1906. The theory of implication. American Journal of Mathematics 28(2): 159–202.CrossRefGoogle Scholar
  41. 41.
    Russell, B., and A. Whitehead. 1925. Principia mathematica, vol. 1, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
  42. 42.
    Shapiro, S. 1991. Foundations without foundationalism: A case for second-order logic. Oxford: Oxford University Press.Google Scholar
  43. 43.
    Shapiro, S., and C. Wright. 2006. All things indefinitely extensible. In Absolute generality, ed. A. Rayo and G. Uzquiano, 255–304. Oxford: Clarendon Press.Google Scholar
  44. 44.
    Stanley, J., and Z. Szabó. 2000. On quantifier domain restriction. Mind & Language 15(2–3): 219–261.CrossRefGoogle Scholar
  45. 45.
    Stanley, J., and T. Williamson. 1995. Quantifiers and context-dependence. Analysis 55(4): 291–295.CrossRefGoogle Scholar
  46. 46.
    Tarski, A. 1935. Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica 1: 261–405, English edition: 1983. The concept of truth in formalized languages. In Logic, semantics and metamathematics, 2nd ed, ed. J. Corcoran. Indianapolis: Hackett.Google Scholar
  47. 47.
    Westerståhl, D. 1985. Logical constants in quantifier languages. Linguistics and Philosophy 8(4): 387–413.CrossRefGoogle Scholar
  48. 48.
    Williamson, T. 2003. Everything. Philosophical Perspectives 17(1): 415–465.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Lady Margaret HallUniversity of OxfordOxfordUK

Personalised recommendations