Skip to main content

Extreme Mass Ratio Inspirals: Perspectives for Their Detection

  • Chapter
  • First Online:

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 179))

Abstract

In this article we consider prospects for detecting extreme mass ratio inspirals (EMRIs) using gravitational wave (GW) observations by a future space borne interferometric observatory eLISA. We start with a description of EMRI formation channels. Different formation scenarios lead to variations in the expected event rate and predict different distributions of the orbital parameters when the GW signal enters the eLISA sensitivity band. Then we will briefly overview the available theoretical models describing the GW signal from EMRIs and describe proposed methods for their detection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In fact this formalism does not assume the force is small—there is a unique geodesic passing through any given point with a particular velocity and so any trajectory can be described as an osculating geodesic. However, the approach is most useful when the force is small since then the trajectory remains almost geodesic and parameterising it in terms of instantaneous geodesic motion is useful.

References

  1. E. Poisson, A. Pound, I. Vega, The motion of point particles in curved spacetime. Living Rev. Relativ. 14(7), (2011)

    Google Scholar 

  2. S.E. Gralla, R.M. Wald, A rigorous derivation of gravitational self-force. Class. Quantum Gravity 25(20), 205009 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  3. C.W. Misner, K.S. Thorne, J.A. Wheeler. Gravitation, 2 edn. (W.H. Freeman and Company, London, (1973)

    Google Scholar 

  4. S. Babak et al., The mock LISA data challenges: from challenge 3 to challenge 4. Class. Quantum Gravity 27, 084009 (2010)

    ADS  Google Scholar 

  5. C.P.L. Berry, J.R. Gair, Extreme-mass-ratio bursts from extragalactic sources. Mon. Not. R. Astron. Soc. 433(4), 3572–3583 (2013)

    Google Scholar 

  6. T. Alexander, C. Hopman, Strong mass segregation around a massive black hole. Astrophys. J. 697, 1861–1869 (2009)

    ADS  Google Scholar 

  7. C. Hopman, T. Alexander, Resonant relaxation near the massive black hole in the galactic center. J. Phys. Conf. Ser. 54, 321–327 (2006)

    ADS  Google Scholar 

  8. C. Hopman, T. Alexander, Resonant relaxation near a massive black hole: the stellar distribution and gravitational wave sources. Astrophys. J. 645, 1152–1163 (2006)

    ADS  Google Scholar 

  9. E. Eilon, G. Kupi, T. Alexander, The efficiency of resonant relaxation around a massive black hole. Astrophys. J. 698, 641–647 (2009)

    ADS  Google Scholar 

  10. T. Alexander, Stellar relaxation processes near the galactic massive black hole. February 2011

    Google Scholar 

  11. D. Merritt, T. Alexander, S. Mikkola, C.M. Will, Stellar dynamics of extreme-mass-ratio inspirals. Phys. Rev. D84, 044024 (2011)

    ADS  Google Scholar 

  12. P. Brem, P. Amaro-Seoane, C.F. Sopuerta, Blocking low-eccentricity EMRIs: A statistical direct-summation N-body study of the Schwarzschild barrier. Mon. Not. R. Astron. Soc. 437(2), 1259–1267 (2014)

    ADS  Google Scholar 

  13. P. Amaro-Seoane, C.F. Sopuerta, M.D. Freitag, The role of the supermassive black hole spin in the estimation of the EMRI event rate. Mon. Not. R. Astron. Soc. 429(4), 3155–3165 (2013)

    ADS  Google Scholar 

  14. D. Merritt, E. Vasiliev, Orbits around black holes in triaxial nuclei. Astrophys. J. 726, 61 (2011)

    ADS  Google Scholar 

  15. H.B. Perets, C. Hopman, T. Alexander, Massive perturber-driven interactions of stars with a massive black hole. Astrophys. J. 656, 709–720 (2007)

    ADS  Google Scholar 

  16. C. Hopman, Extreme mass ratio inspiral rates: dependence on the massive black hole mass. Class. Quantum Gravity 26, 094028 (2009)

    ADS  MATH  Google Scholar 

  17. M. Coleman Miller, M. Freitag, D.P. Hamilton, V.M. Lauburg, Binary encounters with supermassive black holes. Astrophys. J. 631, L117–L120 (2005)

    ADS  Google Scholar 

  18. C. Hopman, Binary dynamics near a massive black hole. Astrophys. J. 700, 1933–1951 (2009)

    ADS  Google Scholar 

  19. P. Amaro-Seoane, J.R. Gair, M. Marc Freitag, C. Miller, I. Mandel et al., Astrophysics, detection and science applications of intermediate- and extreme mass-ratio inspirals. Class. Quantum Gravity 24, R113–R169 (2007)

    MATH  Google Scholar 

  20. W.R. Brown, M.J. Geller, S.J. Kenyon, MMT hypervelocity star survey. Astrophys. J. 690, 1639–1647 (2009)

    ADS  Google Scholar 

  21. K.M. Svensson, R.P. Church, M.B. Davies, The nature of hypervelocity stars as inferred from their galactic trajectories. Mon. Not. Roy. Astron, Soc, (2007)

    Google Scholar 

  22. Y. Levin, Starbursts near supermassive black holes: young stars in the Galactic Center, and gravitational waves in LISA band. Mon. Not. R. Astron. Soc. 374, 515–524 (2007)

    ADS  Google Scholar 

  23. P. Amaro-Seoane, Stellar dynamics and extreme-mass ratio inspirals. ArXiv e-prints, May 2012

    Google Scholar 

  24. Jonathan R. Gair, Probing black holes at low redshift using LISA EMRI observations. Class. Quantum Gravity 26, 094034 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  25. L. Brenneman, Measuring supermassive black hole spins in active galactic nuclei (2013)

    Google Scholar 

  26. F. Shankar, D.H. Weinberg, J. Miralda-Escude, Self-consistent models of the AGN and black hole populations: duty cycles, accretion rates, and the mean radiative efficiency. Astrophys. J. 690, 20–41 (2009)

    ADS  Google Scholar 

  27. P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binetruy, E. Berti et al., Low-frequency gravitational-wave science with eLISA/NGO. Class. Quantum Gravity 29, 124016 (2012)

    ADS  Google Scholar 

  28. P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binetruy, E. Berti et al., eLISA/NGO: astrophysics and cosmology in the gravitational-wave millihertz regime. GW Notes 6, 4–110 (2013)

    Google Scholar 

  29. K. Liu, N. Wex, M. Kramer, J.M. Cordes, T.J.W. Lazio, Prospects for probing the spacetime of Sgr A* with pulsars. Astrophys. J. 747, 1 (2012)

    ADS  Google Scholar 

  30. K. Gultekin, D.O. Richstone, K. Gebhardt, T.R. Lauer, S. Tremaine et al., The M-sigma and M-L relations in galactic bulges and determinations of their intrinsic scatter. Astrophys. J. 698, 198–221 (2009)

    ADS  Google Scholar 

  31. S. Mathur, D. Grupe, The locus of highly accreting AGNs on the M(BH)-sigma plane: selections, limitations, and implications. Astrophys. J. 633, 688–692 (2005)

    ADS  Google Scholar 

  32. M. Volonteri, M. Sikora, J-P. Lasota, Black-Hole Spin and Galactic Morphology, (2007)

    Google Scholar 

  33. M. Volonteri, P. Natarajan, Journey to the \(M_{\rm BH} - \sigma \) relation: the fate of low mass black holes in the universe. Mon. Not. Roy. Astron. Soc. 400, 1911 (2009)

    ADS  Google Scholar 

  34. S. Babak, J.R. Gair, A. Petiteau, A. Sesana, Fundamental physics and cosmology with LISA. Class. Quantum Gravity 28, 114001 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  35. A. Buonanno, T. Damour, Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D59, 084006 (1999)

    ADS  MathSciNet  Google Scholar 

  36. T. Damour, A. Nagar, The effective one body description of the two-body problem. Fundam. Theor. Phys. 162, 211–252 (2011)

    MATH  Google Scholar 

  37. Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi, T. Tanaka, Black hole perturbation: Chapter 1. Prog. Theor. Phys. Suppl. 128, 1–121 (1997)

    ADS  MATH  Google Scholar 

  38. L. Barack, C. Cutler, LISA capture sources: approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys. Rev. D69, 082005 (2004)

    ADS  Google Scholar 

  39. P.C. Peters, J. Mathews, Gravitational radiation from point masses in a Keplerian orbit. Phys. Rev. 131, 435–439 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  40. R. Ruffini, M. Sasaki, On a semirelativistic treatment of the gravitational radiation from a mass thrusted into a black hole. Prog. Theor. Phys. 66, 1627–1638 (1981)

    ADS  Google Scholar 

  41. T. Tanaka, M. Shibata, M. Sasaki, H. Tagoshi, T. Nakamura, Gravitational wave induced by a particle orbiting around a Schwarzschild black hole. Prog. Theor. Phys. 90, 65–84 (1993)

    ADS  Google Scholar 

  42. S. Babak, H. Fang, J.R. Gair, K. Glampedakis, S.A. Hughes, ‘Kludge’ gravitational waveforms for a test-body orbiting a Kerr black hole. Phys. Rev. D75, 024005 (2007)

    ADS  MathSciNet  Google Scholar 

  43. C.F. Sopuerta, N. Yunes, New Kludge scheme for the construction of approximate waveforms for extreme-mass-ratio inspirals. Phys. Rev. D84, 124060 (2011)

    ADS  Google Scholar 

  44. S.A. Teukolsky, Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations. Astrophys. J. 185, 635–647 (1973)

    ADS  Google Scholar 

  45. S. Drasco, S.A. Hughes, Gravitational wave snapshots of generic extreme mass ratio inspirals. Phys. Rev. D73, 024027 (2006)

    ADS  Google Scholar 

  46. K. Martel, Gravitational wave forms from a point particle orbiting a Schwarzschild black hole. Phys. Rev. D69, 044025 (2004)

    ADS  Google Scholar 

  47. I. Vega, B. Wardell, P. Diener, Effective source approach to self-force calculations. Class. Quantum Gravity 28, 134010 (2011)

    ADS  MATH  Google Scholar 

  48. P. Diener, I. Vega, B. Wardell, S. Detweiler, Self-consistent orbital evolution of a particle around a Schwarzschild black hole. Phys. Rev. Lett. 108, 191102 (2012)

    ADS  Google Scholar 

  49. J.R. Gair, E.E. Flanagan, S. Drasco, T. Hinderer, S. Babak, Forced motion near black holes. Phys. Rev. D83, 044037 (2011)

    ADS  Google Scholar 

  50. T. Hinderer, E.E. Flanagan, Two timescale analysis of extreme mass ratio inspirals in Kerr. I. Orbital Motion. Phys. Rev. D78, 064028 (2008)

    ADS  Google Scholar 

  51. A. Pound, E. Poisson, Osculating orbits in Schwarzschild spacetime, with an application to extreme mass-ratio inspirals. Phys. Rev. D77, 044013 (2008)

    ADS  Google Scholar 

  52. N. Warburton, S. Akcay, L. Barack, J.R. Gair, N. Sago, Evolution of inspiral orbits around a Schwarzschild black hole. Phys. Rev. D85(6), 061501 (2012)

    ADS  Google Scholar 

  53. W. Tulczyjew, Motion of multipole particles in general relativity theory. Acta Phys. Pol. 18, 393 (1959)

    MathSciNet  MATH  Google Scholar 

  54. J. Frenkel, Die Elektrodynamik des rotierenden Elektrons. Z. Phys. 37, 243–262 (1926)

    ADS  MATH  Google Scholar 

  55. F.A.E. Pirani, On the physical significance of the Riemann tensor. Acta Phys. Pol. 15, 389–405 (1956)

    ADS  MathSciNet  MATH  Google Scholar 

  56. K. Kyrian, O. Semerak, Spinning test particles in a Kerr field. Mon. Not. R. Astron. Soc. 382, 1922 (2007)

    ADS  Google Scholar 

  57. Y.N. Obukhov, D. Puetzfeld, Dynamics of test bodies with spin in de Sitter spacetime. Phys. Rev. D83, 044024 (2011)

    ADS  Google Scholar 

  58. L. Filipe, O. Costa, C.A.R. Herdeiro, J. Natario, M. Zilhao, Mathisson’s helical motions for a spinning particle: Are they unphysical? Phys. Rev. D85, 024001 (2012)

    ADS  Google Scholar 

  59. N. Kudryashova, Y.N. Obukhov, On the dynamics of classical particle with spin. Phys. Lett. A 374, 3801–3805 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  60. E. Hackmann, C. Lämmerzahl, Y.N. Obukhov, D. Puetzfeld, I. Schaffer, Motion of spinning test bodies in Kerr spacetime. Phys. Rev. D90, 064035 (2014)

    ADS  Google Scholar 

  61. R. Plyatsko, O. Stefanyshyn, M. Fenyk, Mathisson-Papapetrou-Dixon equations in the Schwarzschild and Kerr backgrounds. Class. Quantum Gravity 28, 195025 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  62. F. Antonucci, M. Armano, H. Audley, G. Auger, M. Benedetti et al., The LISA Pathfinder mission. Class. Quantum Gravity 29, 124014 (2012)

    ADS  Google Scholar 

  63. S. Babak, J.R. Gair, E.K. Porter, An algorithm for detection of extreme mass ratio inspirals in LISA data. Class. Quantum Gravity 26, 135004 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  64. Y. Wang, Y. Shang, S. Babak, EMRI data analysis with a phenomenological waveform. Phys. Rev. D86, 104050 (2012)

    ADS  Google Scholar 

  65. N.J. Cornish, Detection strategies for extreme mass ratio inspirals. Class. Quantum Gravity 28, 094016 (2011)

    ADS  MATH  Google Scholar 

  66. W. Schmidt, Celestial mechanics in Kerr space-time. Class. Quantum Gravity 19, 2743 (2002)

    ADS  MATH  Google Scholar 

  67. P. Jaranowski, A. Krolak, B.F. Schutz, Data analysis of gravitational—wave signals from spinning neutron stars. 1. The signal and its detection. Phys. Rev. D58, 063001 (1998)

    ADS  Google Scholar 

  68. E. Barausse, V. Cardoso, P. Pani, Can environmental effects spoil precision gravitational-wave astrophysics? Phys. Rev. D89, 104059 (2014)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Babak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Babak, S., Gair, J.R., Cole, R.H. (2015). Extreme Mass Ratio Inspirals: Perspectives for Their Detection. In: Puetzfeld, D., Lämmerzahl, C., Schutz, B. (eds) Equations of Motion in Relativistic Gravity. Fundamental Theories of Physics, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-319-18335-0_23

Download citation

Publish with us

Policies and ethics