Skip to main content

Multipolar Test Body Equations of Motion in Generalized Gravity Theories

  • Chapter
  • First Online:

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 179))

Abstract

We give an overview of the derivation of multipolar equations of motion of extended test bodies for a wide set of gravitational theories beyond the standard general relativistic framework. The classes of theories covered range from simple generalizations of General Relativity, e.g., encompassing additional scalar fields, to theories with additional geometrical structures which are needed for the description of microstructured matter. Our unified framework even allows to handle theories with nonminimal coupling to matter, and thereby for a systematic test of a very broad range of gravitational theories.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Notice a different conventional sign, as compared to our previous work [26].

  2. 2.

    Note that in order to facilitate the comparison with our previous work [51], we provide in appendix the explicit form of integrated conservation laws (127) and (128), as well as the generalized integrated moments (141)–(143) in the notation used in [51].

References

  1. M. Mathisson, Neue Mechanik materieller Systeme. Acta Phys. Pol. 6, 163 (1937)

    MATH  Google Scholar 

  2. A. Papapetrou, Spinning test-particles in general relativity. I. Proc. Roy. Soc. Lond. A 209, 248 (1951)

    ADS  MathSciNet  MATH  Google Scholar 

  3. W.G. Dixon, A covariant multipole formalism for extended test bodies in general relativity. Nuovo Cimento 34, 317 (1964)

    MathSciNet  MATH  Google Scholar 

  4. W.G. Dixon, Dynamics of extended bodies in general relativity. III. Equations of motion. Philos. Trans. R. Soc. Lond. A 277, 59 (1974)

    ADS  MathSciNet  Google Scholar 

  5. W.G. Dixon, Extended bodies in general relativity: their description and motion, in Proceedings of International School of Physics Enrico Fermi LXVII, ed. by J. Ehlers (North Holland, Amsterdam, 1979), p. 156

    Google Scholar 

  6. W.G. Dixon, Mathisson’s new mechanics: its aims and realisation. Acta Phys. Pol. B Proc. Suppl. 1, 27 (2008)

    Google Scholar 

  7. J.L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960)

    MATH  Google Scholar 

  8. B.S. DeWitt, R.W. Brehme, Radiation damping in a gravitational field. Ann. Phys. (N.Y.) 9, 220 (1960)

    ADS  MathSciNet  MATH  Google Scholar 

  9. A. Einstein, The Meaning of Relativity, 5th revised edn. (Princeton University Press, Princeton, 1956)

    Google Scholar 

  10. T. Harko, Thermodynamic interpretation of the generalized gravity models with geometry—matter coupling. Phys. Rev. D 90, 044067 (2014)

    ADS  Google Scholar 

  11. H.J. Schmidt, Fourth order gravity: equations, history, and applications to cosmology. Int. J. Geom. Methods Mod. Phys. 4, 209 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  12. O. Bertolami, C.G. Böhmer, T. Harko, F.S.N. Lobo, Extra force in \(f(R)\) modified theories of gravity. Phys. Rev. D 75, 104016 (2007)

    ADS  MathSciNet  Google Scholar 

  13. N. Straumann, Problems with modified theories of gravity, as alternatives to dark energy (2008). arXiv:0809.5148v1 [gr-qc]

  14. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from \(F(R)\) theory to Lorentz non-invariant models. Phys. Rep. 505, 59 (2011)

    ADS  MathSciNet  Google Scholar 

  15. F.W. Hehl, G.D. Kerlick, Metric-affine variational principles in general relativity. I. Riemannian spacetime. Gen. Relativ. Gravit. 9, 691 (1978)

    ADS  MATH  Google Scholar 

  16. F.W. Hehl, G.D. Kerlick, Metric-affine variational principles in general relativity. II. Relaxation of the Riemannian constraint. Gen. Relativ. Gravit. 13, 1037 (1981)

    ADS  MathSciNet  MATH  Google Scholar 

  17. T.P. Sotiriou, V. Faraoni, \(f(R)\) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)

    ADS  MATH  Google Scholar 

  18. P. Rastall, Generalization of the Einstein theory. Phys. Rev. D 6, 3357 (1972)

    ADS  MathSciNet  MATH  Google Scholar 

  19. L.L. Smalley, Modified Brans-Dicke gravitational theory with nonzero divergence of the energy-momentum tensor. Phys. Rev. D 9, 1635 (1974)

    ADS  Google Scholar 

  20. M. Blagojević, Gravitation and Gauge Symmetries (IOP Publishing, London, 2002)

    MATH  Google Scholar 

  21. M. Blagojević, F.W. Hehl, Gauge Theories of Gravitation. A Reader with Commentaries (Imperial College Press, London, 2013)

    MATH  Google Scholar 

  22. Yu.N. Obukhov, D. Puetzfeld, Conservation laws in gravity: a unified framework. Phys. Rev. D 90, 024004 (2014)

    Google Scholar 

  23. Yu.N. Obukhov, D. Puetzfeld, Equations of motion in scalar-tensor theories of gravity: a covariant multipolar approach. Phys. Rev. D 90, 104041 (2014)

    Google Scholar 

  24. D. Puetzfeld, Yu.N. Obukhov, Equations of motion in metric-affine gravity: A covariant unified framework. Phys. Rev. D 90, 084034 (2014)

    Google Scholar 

  25. F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Ne’eman, Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1 (1995)

    ADS  MathSciNet  Google Scholar 

  26. D. Puetzfeld, Yu.N. Obukhov, Covariant equations of motion for test bodies in gravitational theories with general nonminimal coupling. Phys. Rev. D 87, 044045 (2013)

    Google Scholar 

  27. J.A. Schouten, Ricci-Calculus. An Introduction to Tensor Analysis and its Geometric Applications, 2nd edn. (Springer, Berlin, 1954)

    MATH  Google Scholar 

  28. J.L. Synge, A. Schild, Tensor Calculus (Dover, New York, 1978)

    MATH  Google Scholar 

  29. A. Lichnerowicz, Geometry of Groups of Transformations (Noordhoff International Publishing, Leyden, 1977)

    MATH  Google Scholar 

  30. A. Trautman, On the Einstein-Cartan equations. IV. Bulletin de l’Académie Polonaise des Sciences, Sér. des Sciences Math., Astron, et Phys. 21, 345 (1973)

    Google Scholar 

  31. K. Yano, The Theory of Lie Derivatives and its Applications (North-Holland, Amsterdam, 1955)

    Google Scholar 

  32. D.W. Sciama, The analogy between charge and spin in general relativity, Recent Developments in General Relativity, Festschrift for L. Infeld (Pergamon Press, Oxford, 1962), p. 415

    Google Scholar 

  33. T.W.B. Kibble, Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  34. F.W. Hehl, G.D. Kerlick, P. von der Heyde, On hypermomentum in general relativity. I. The notion of hypermomentum. Zeits. Naturforsch. 31a, 111 (1976)

    ADS  Google Scholar 

  35. F.W. Hehl, G.D. Kerlick, P. von der Heyde, On hypermomentum in general relativity. II. The geometry of spacetime. Zeits. Naturforsch. 31a, 524 (1976)

    ADS  Google Scholar 

  36. F.W. Hehl, G.D. Kerlick, P. von der Heyde, On hypermomentum in general relativity. III. Coupling hypermomentum to geometry. Zeits. Naturforsch. 31a, 823 (1976)

    ADS  Google Scholar 

  37. V.N. Ponomariev, Yu.N. Obukhov, The generalized Einstein-Maxwell theory of gravitation. Gen. Relativ. Gravit. 14, 309 (1982)

    Google Scholar 

  38. D. Vassiliev, Quadratic metric-affine gravity. Ann. Phys. (Leipzig) 14, 231 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  39. T.P. Sotiriou, S. Liberati, Metric-affine \(f(R)\) theories of gravity. Ann. Phys. (N.Y.) 322, 935 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  40. V. Vitagliano, T.P. Sotiriou, S. Liberati, The dynamics of metric-affine gravity. Ann. Phys. (N.Y.) 326, 1259 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Yu.N. Obukhov, R. Tresguerres, Hyperfluid—a model of classical matter with hypermomentum. Phys. Lett. A 184, 17 (1993)

    Google Scholar 

  42. A.H. Taub, General relativistic variational principle for perfect fluids. Phys. Rev. 94, 1468 (1954)

    ADS  MathSciNet  Google Scholar 

  43. B.F. Schutz, Perfect fluids in general relativity: velocity potentials and variational principles. Phys. Rev. D 2, 2762 (1970)

    ADS  MathSciNet  MATH  Google Scholar 

  44. J. Weyssenhoff, A. Raabe, Relativistic dynamics of spin-fluids and spin-particles. Acta Phys. Pol. 9, 7 (1947)

    MathSciNet  Google Scholar 

  45. Yu.N. Obukhov, V.A. Korotky, The Weyssenhoff fluid in Einstein-Cartan theory. Class. Quantum Gravity 4, 1633 (1987)

    Google Scholar 

  46. Y. Ne’eman, F.W. Hehl, Test matter in a spacetime. Class. Quantum Gravity 14, A251 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Yu.N. Obukhov, Poincaré gauge gravity: selected topics. Int. J. Geom. Methods Mod. Phys. 3, 95 (2006)

    Google Scholar 

  48. Yu.N Obukhov, G.F. Rubilar, Invariant conserved currents in gravity theories with local Lorentz and diffeomorphism symmetry. Phys. Rev. D 74, 064002 (2006)

    Google Scholar 

  49. Yu.N. Obukhov, G.F. Rubilar, Invariant conserved currents in gravity theories: Diffeomorphisms and local gauge symmetries. Phys. Rev. D 76, 124030 (2007)

    Google Scholar 

  50. W.G. Dixon, Description of extended bodies by multipole moments in special relativity. J. Math. Phys. 8, 1591 (1967)

    Google Scholar 

  51. D. Puetzfeld, Yu.N. Obukhov, Equations of motion in gravity theories with nonminimal coupling: A loophole to detect torsion macroscopically? Phys. Rev. D 88, 064025 (2013)

    Google Scholar 

  52. H. Weyl, Raum-Zeit-Materie (Springer, Berlin, 1923)

    MATH  Google Scholar 

  53. P.B. Yasskin, W.R. Stoeger, Propagation equations for test bodies with spin and rotation in theories of gravity with torsion. Phys. Rev. D 21, 2081 (1980)

    ADS  MathSciNet  Google Scholar 

  54. C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  55. C. Brans, Mach’s principle and a relativistic theory of gravitation. II. Phys. Rev. 125, 2194 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  56. C. Brans, Mach’s principle and locally measured gravitational constant in general relativity. Phys. Rev. 125, 388 (1962)

    ADS  Google Scholar 

  57. R.H. Dicke, Mach’s principle and invariance under transformation of units. Phys. Rev. 125, 2163 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  58. R.H. Dicke, The Theoretical Significance of Experimental Relativity (Gordon and Breach, New York, 1964)

    MATH  Google Scholar 

  59. P. Jordan, Schwerkraft und Weltall, 2nd edn. (Vieweg, Braunschweig, 1955)

    MATH  Google Scholar 

  60. P. Jordan, Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen. Z. Phys. 157, 112 (1959)

    ADS  Google Scholar 

  61. Y. Thiry, Etude mathématique des équations d’une théorie unitaire à quinze variables de champ. J. Math. Pures et Appl. Sér. 9 30, 275 (1951)

    MathSciNet  MATH  Google Scholar 

  62. Y. Fujii, K. Maeda, The Scalar-tensor Theory of Gravity (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  63. C. Brans, The roots of scalar-tensor theory: an approximate history (2005). arXiv:gr-qc/0506063

  64. H. Goenner, Some remarks on the genesis of scalar-tensor theories. Gen. Relativ. Gravit. 44, 2077 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  65. T.P. Sotiriou, Gravity and scalar fields. Lecture Notes in Physics, ed. by E. Papantonopoulos 892, 3 (2015)

    Google Scholar 

  66. P. Bergmann, Comments on the scalar-tensor theory. Int. J. Theor. Phys. 1, 25 (1968)

    Google Scholar 

  67. R.V. Wagoner, Scalar-tensor theory and gravitational waves. Phys. Rev. 12, 3209 (1970)

    Google Scholar 

  68. T. Damour, G. Esposito-Farèse, Tensor-multi-scalar theories of gravitation. Class. Quantum Gravity 9, 2093 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  69. C.M. Will, Theory and Experiment in Gravitational Physics, 2nd edn. (Cambridge University Press, Cambridge, 1993)

    MATH  Google Scholar 

  70. F.W. Hehl, How does one measure torsion of space-time? Phys. Lett. A 36, 225 (1971)

    ADS  MathSciNet  Google Scholar 

  71. I. Bailey, W. Israel, Lagrangian dynamics of spinning particles and polarized media in general relativity. Commun. Math. Phys. 42, 65 (1975)

    ADS  MathSciNet  Google Scholar 

  72. W.R. Stoeger, P.B. Yasskin, Can a macroscopic gyroscope feel torsion? Gen. Relativ. Gravit. 11, 427 (1979)

    ADS  MathSciNet  MATH  Google Scholar 

  73. D. Puetzfeld, Yu.N. Obukhov, Propagation equations for deformable test bodies with microstructure in extended theories of gravity. Phys. Rev. D 76, 084025 (2007)

    Google Scholar 

  74. D. Puetzfeld, Yu.N. Obukhov, Motion of test bodies in theories with nonminimal coupling. Phys. Rev. D 78, 121501 (2008)

    Google Scholar 

  75. D. Puetzfeld, Yu.N. Obukhov, Probing non-Riemannian spacetime geometry. Phys. Lett. A 372, 6711 (2008)

    Google Scholar 

  76. F.W. Hehl, Yu.N. Obukhov, D. Puetzfeld, On Poincaré gauge theory of gravity, its equations of motion, and Gravity Probe B. Phys. Lett. A 377, 1775 (2013)

    Google Scholar 

  77. D. Puetzfeld, Yu.N. Obukhov, Unraveling gravity beyond Einstein with extended test bodies. Phys. Lett. A 377, 2447 (2013)

    Google Scholar 

  78. D. Puetzfeld, Yu.N. Obukhov, Prospects of detecting spacetime torsion. Int. J. Mod. Phys. D 23, 1442004 (2014)

    Google Scholar 

  79. A. Einstein, Geometrie und Erfahrung. Sitzungsber. Preuss. Akad. Wiss. 1, 123 (1921)

    MATH  Google Scholar 

  80. E. Poisson, A. Pound, I. Vega, The motion of point particles in curved spacetime. Living Rev. Relativ. 14(7) (2011)

    Google Scholar 

Download references

Acknowledgments

We would like to thank A. Trautman (University of Warsaw), W.G. Dixon (University of Cambridge), J. Madore (University of Paris South), and W. Tulczyjew (INFN Napoli) for sharing their insights into gravitational multipole formalisms and discussing their pioneering works with us. Furthermore, we would like to thank F.W. Hehl (University of Cologne) for fruitful discussion on gauge gravity models, in particular on Metric-Affine Gravity (MAG). This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the grant LA-905/8-1/2 and SFB 1128/1 (D.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri N. Obukhov .

Editor information

Editors and Affiliations

Appendices

Appendix

A Conventions and Symbols

Table 3 Directory of symbols
Table 4 Directory of symbols
Table 5 Directory of symbols

In the following we summarize our conventions, and collect some frequently used formulas. A directory of symbols used throughout the text can be found in Tables 3, 4 and 5.

For an arbitrary \(k\)-tensor \(T_{a_1 \ldots a_k}\), the symmetrization and antisymmetrization are defined by

$$\begin{aligned} T_{(a_1\ldots a_k)}:= & {} {\frac{1}{k!}}\sum _{I=1}^{k!}T_{\pi _I\!\{a_1\ldots a_k\}},\end{aligned}$$
(235)
$$\begin{aligned} T_{[a_1\ldots a_k]}:= & {} {\frac{1}{k!}}\sum _{I=1}^{k!}(-1)^{|\pi _I|}T_{\pi _I\!\{a_1\ldots a_k\}}, \end{aligned}$$
(236)

where the sum is taken over all possible permutations (symbolically denoted by \(\pi _I\!\{a_1\ldots a_k\}\)) of its \(k\) indices. As is well-known, the number of such permutations is equal to \(k!\). The sign factor depends on whether a permutation is even (\(|\pi | = 0\)) or odd (\(|\pi | = 1\)). The number of independent components of the totally symmetric tensor \(T_{(a_1\ldots a_k)}\) of rank \(k\) in \(n\) dimensions is equal to the binomial coefficient \({\left( {\begin{array}{c}n-1+k\\ k\end{array}}\right) } = (n-1+k)!/[k!(n-1)!]\), whereas the number of independent components of the totally antisymmetric tensor \(T_{[a_1\ldots a_k]}\) of rank \(k\) in \(n\) dimensions is equal to the binomial coefficient \({\left( {\begin{array}{c}n\\ k\end{array}}\right) } = n!/[k!(n-k)!]\). For example, for a second rank tensor \(T_{ab}\) the symmetrization yields a tensor \(T_{(ab)} = {\frac{1}{2}}(T_{ab} + T_{ba})\) with 10 independent components, and the antisymmetrization yields another tensor \(T_{[ab]} = {\frac{1}{2}}(T_{ab} - T_{ba})\) with 6 independent components.

In the derivation of the equations of motion we made use of the bitensor formalism, see, e.g., [7, 8, 80] for introductions and references. In particular, the world-function is defined as an integral \(\sigma (x,y) := \frac{1}{2} \epsilon \left( \int \limits _x^y d\tau \right) ^2\) over the geodesic curve connecting the spacetime points \(x\) and \(y\), where \(\epsilon = \pm 1\) for timelike/spacelike curves. Note that our curvature conventions differ from those in [7, 80]. Indices attached to the world-function always denote covariant derivatives, at the given point, i.e. \(\sigma _y:= \widetilde{\nabla }_y \sigma \), hence we do not make explicit use of the semicolon in case of the world-function. The parallel propagator by \(g^y{}_x(x,y)\) allows for the parallel transportation of objects along the unique geodesic that links the points \(x\) and \(y\). For example, given a vector \(V^x\) at \(x\), the corresponding vector at \(y\) is obtained by means of the parallel transport along the geodesic curve as \(V^y = g^y{}_x(x,y)V^x\). For more details see, e.g., [7, 8] or Sect. 5 in [80]. A compact summary of useful formulas in the context of the bitensor formalism can also be found in the appendices A and B of [26].

We start by stating, without proof, the following useful rule for a bitensor \(B\) with arbitrary indices at different points (here just denoted by dots):

$$\begin{aligned} \left[ B_{\ldots } \right] _{;y} = \left[ B_{\ldots ; y} \right] + \left[ B_{\ldots ; x} \right] . \end{aligned}$$
(237)

Here a coincidence limit of a bitensor \(B_{\ldots }(x,y)\) is a tensor

$$\begin{aligned} \left[ B_{\ldots } \right] = \lim \limits _{x\rightarrow y}\,B_{\ldots }(x,y), \end{aligned}$$
(238)

determined at \(y\). Furthermore, we collect the following useful identities:

$$\begin{aligned}&\sigma _{y_0 y_1 x_0 y_2 x_1} = \sigma _{y_0 y_1 y_2 x_0 x_1} = \sigma _{x_0 x_1 y_0 y_1 y_2 }, \end{aligned}$$
(239)
$$\begin{aligned}&g^{x_1 x_2} \sigma _{x_1} \sigma _{x_2} = 2 \sigma = g^{y_1 y_2} \sigma _{y_1} \sigma _{y_2}, \end{aligned}$$
(240)
$$\begin{aligned}&\left[ \sigma \right] =0, \quad \left[ \sigma _x \right] = \left[ \sigma _y \right] = 0, \end{aligned}$$
(241)
$$\begin{aligned}&\left[ \sigma _{x_1 x_2} \right] = \left[ \sigma _{y_1 y_2} \right] = g_{y_1 y_2}, \quad \left[ \sigma _{x_1 y_2} \right] = \left[ \sigma _{y_1 x_2} \right] = - g_{y_1 y_2}, \end{aligned}$$
(242)
$$\begin{aligned}&\left[ \sigma _{x_1 x_2 x_3} \right] = \left[ \sigma _{x_1 x_2 y_3} \right] = \left[ \sigma _{x_1 y_2 y_3} \right] = \left[ \sigma _{y_1 y_2 y_3} \right] = 0,\end{aligned}$$
(243)
$$\begin{aligned}&\left[ g^{x_0}{}_{y_1} \right] = \delta ^{y_0}{}_{y_1}, \quad \left[ g^{x_0}{}_{y_1 ; x_2} \right] = \left[ g^{x_0}{}_{y_1 ; y_2} \right] = 0, \end{aligned}$$
(244)
$$\begin{aligned}&\left[ g^{x_0}{}_{y_1 ; x_2 x_3} \right] = \frac{1}{2} \widetilde{R}{}^{y_0}{}_{y_1 y_2 y_3}. \end{aligned}$$
(245)

B Covariant Expansions

Here we briefly summarize the covariant expansions of the second derivative of the world-function, and the derivative of the parallel propagator:

$$\begin{aligned} \sigma ^{y_0}{}_{x_1}= & {} g^{y'}{}_{x_1}\biggl ( -\,\delta ^{y_0}{}_{y'} +\,\sum \limits _{k=2}^\infty \,{\frac{1}{k!}}\,\alpha ^{y_0}{}_{y'y_2\!\ldots \!y_{k+1}}\sigma ^{y_2}\cdots \sigma ^{y_{k+1}}\biggr )\!,\end{aligned}$$
(246)
$$\begin{aligned} \sigma ^{y_0}{}_{y_1}= & {} \delta ^{y_0}{}_{y_1} -\,\sum \limits _{k=2}^\infty \,{\frac{1}{k!}}\,\beta ^{y_0}{}_{y_1y_2\ldots y_{k+1}} \sigma ^{y_2}\!\cdots \!\sigma ^{y_{k+1}}, \end{aligned}$$
(247)
$$\begin{aligned} g^{y_0}{}_{x_1 ; x_2}= & {} g^{y'}{\!}_{x_1} g^{y''}{\!}_{x_2}\biggl ({\frac{1}{2}} \widetilde{R}{}^{y_0}{}_{y'y''y_3}\sigma ^{y_3}\!+\!\sum \limits _{k=2}^\infty \,{\frac{1}{k!}}\,\gamma ^{y_0}{}_{y'y''y_3\ldots y_{k+2}}\sigma ^{y_3}\!\cdots \!\sigma ^{y_{k+2}}\!\biggr )\!,\nonumber \\ \end{aligned}$$
(248)
$$\begin{aligned} g^{y_0}{}_{x_1 ; y_2}= & {} g^{y'}{\!}_{x_1} \biggl ({\frac{1}{2}} \widetilde{R}{}^{y_0}{}_{y'y_2y_3}\sigma ^{y_3}\!+\!\sum \limits _{k=2}^\infty \,{\frac{1}{k!}}\,\gamma ^{y_0}{}_{y'y_2y_3\ldots y_{k+2}}\sigma ^{y_3}\!\cdots \!\sigma ^{y_{k+2}}\!\biggr ).\end{aligned}$$
(249)
$$\begin{aligned} G^{Y_0}{}_{X_1 ; x_2}= & {} G^{Y'}{\!}_{X_1} g^{y''}{\!}_{x_2} \sum \limits _{k=1}^\infty \,{\frac{1}{k!}}\,\gamma ^{Y_0}{}_{Y'y''y_3\ldots y_{k+2}}\sigma ^{y_3}\!\cdots \!\sigma ^{y_{k+2}}, \end{aligned}$$
(250)
$$\begin{aligned} G^{Y_0}{}_{X_1 ; y_2}= & {} G^{Y'}{\!}_{X_1} \sum \limits _{k=1}^\infty \,{\frac{1}{k!}}\,\gamma ^{Y_0}{}_{Y'y_2y_3\ldots y_{k+2}}\sigma ^{y_3}\!\cdots \!\sigma ^{y_{k+2}}. \end{aligned}$$
(251)

The coefficients \(\alpha , \beta , \gamma \) in these expansions are polynomials constructed from the Riemann curvature tensor and its covariant derivatives. The first coefficients read as follows:

$$\begin{aligned} \alpha ^{y_0}{}_{y_1y_2y_3}= & {} - \frac{1}{3} \widetilde{R}{}^{y_0}{}_{(y_2y_3)y_1},\end{aligned}$$
(252)
$$\begin{aligned} \beta ^{y_0}{}_{y_1y_2y_3}= & {} \frac{2}{3}\widetilde{R}{}^{y_0}{}_{(y_2y_3)y_1},\end{aligned}$$
(253)
$$\begin{aligned} \alpha ^{y_0}{}_{y_1y_2y_3y_4}= & {} \frac{1}{2} \widetilde{\nabla }_{(y_2}\widetilde{R}{}^{y_0}{}_{y_3y_4)y_1},\end{aligned}$$
(254)
$$\begin{aligned} \beta ^{y_0}{}_{y_1y_2y_3y_4}= & {} - \frac{1}{2} \widetilde{\nabla }_{(y_2} \widetilde{R}{}^{y_0}{}_{y_3y_4)y_1},\end{aligned}$$
(255)
$$\begin{aligned} \gamma ^{y_0}{}_{y_1y_2y_3y_4}= & {} \frac{1}{3} \widetilde{\nabla }_{(y_3} \widetilde{R}{}^{y_0}{}_{|y_1|y_4)y_2}. \end{aligned}$$
(256)

In addition, we also need the covariant expansion of a vector:

$$\begin{aligned} A_x = g^{y_0}{}_x\,\sum \limits _{k=0}^\infty \,{\frac{(-1)^k}{k!}} \, A_{y_0;y_1\ldots y_k}\,\sigma ^{y_1}\cdots \sigma ^{y_k}. \end{aligned}$$
(257)

C Explicit Form

Here we make contact with our notation in [51] to facilitate a direct comparison to the results in there.

We introduce the auxiliary variables

$$\begin{aligned} \Phi ^{y_1\ldots y_ny_0}{}_{x_0}:= & {} \sigma ^{y_1} \cdots \sigma ^{y_n} g^{y_0}{}_{x_0},\end{aligned}$$
(258)
$$\begin{aligned} \Psi ^{y_1\ldots y_ny_0y'}{}_{x_0x'}:= & {} \sigma ^{y_1} \cdots \sigma ^{y_n} g^{y_0}{}_{x_0}g^{y'}{}_{x'}. \end{aligned}$$
(259)

Their derivatives

$$\begin{aligned} \Psi ^{y_1\ldots y_ny_0y'}{}_{x_0x';z}= & {} \sum ^{n}_{a=1}\sigma ^{y_1}\cdots \sigma ^{y_a}{}_z\cdots \sigma ^{y_n}g^{y_0}{}_{x_0}g^{y'}{}_{x'} \nonumber \\&+ \sigma ^{y_1} \cdots \sigma ^{y_n}\left( g^{y_0}{}_{x_0;z}g^{y'}{}_{x'} + g^{y_0}{}_{x_0}g^{y'}{}_{x';z}\right) ,\end{aligned}$$
(260)
$$\begin{aligned} \Phi ^{y_1\ldots y_ny_0}{}_{x_0;z}= & {} \sum ^{n}_{a=1}\sigma ^{y_1}\cdots \sigma ^{y_a}{}_z\cdots \sigma ^{y_n}g^{y_0}{}_{x_0}\nonumber \\&+ \sigma ^{y_1} \cdots \sigma ^{y_n}\,g^{y_0}{}_{x_0;z}, \end{aligned}$$
(261)

can be straightforwardly evaluated by using the expansions from the previous appendix.

In terms of (258) and (259) the integrated conservation laws (127) and (128) take the form:

$$\begin{aligned}&{\frac{D}{\textit{ds}}} \int \Psi ^{y_1\ldots y_ny_0y'}{}_{x_0x'}{\mathfrak S}^{x_0 x' x_2} d\Sigma _{x_2} = \nonumber \\&\int \Psi ^{y_1\ldots y_ny_0y'}{}_{x_0x'}\Big ( - U_{x''''}{}^{x'}{}_{x''}{}^{x_0}{}_{x'''}{\mathfrak S}^{x'' x''' x''''} + {\mathfrak T}^{x' x_0} - {\mathfrak t}^{x' x_0}\Big ) w^{x_2} d\Sigma _{x_2} \nonumber \\&+\,\int \Psi ^{y_1\ldots y_ny_0y'}{}_{x_0x';x''}{\mathfrak S}^{x_0 x' x''}w^{x_2} d\Sigma _{x_2}\nonumber \\&+ \int v^{y_{n+1}}\Psi ^{y_1\ldots y_ny_0y'}{}_{x_0x';y_{n+1}}{\mathfrak S}^{x_0 x' x_2}d\Sigma _{x_2}, \end{aligned}$$
(262)
$$\begin{aligned}&{\frac{D}{\textit{ds}}} \int \Phi ^{y_1\ldots y_ny_0}{}_{x_0}{\mathfrak T}^{x_0 x_2} d\Sigma _{x_2} = \int \Phi ^{y_1\ldots y_ny_0}{}_{x_0} \Big (-V_{x''}{}^{x_0}{}_{x'}{\mathfrak T}^{x' x''} \nonumber \\&- R^{x_0}{}_{x''' x' x''}{\mathfrak S}^{x' x'' x'''} - \frac{1}{2} Q^{x_0}{}_{x'' x'}{\mathfrak t}^{x' x''} -\,A^{x_0}{\mathfrak L}_\mathrm{mat}\Big ) w^{x_2} d\Sigma _{x_2} \nonumber \\&+ \int \Phi ^{y_1\ldots y_ny_0}{}_{x_0;x'}{\mathfrak T}^{x_0 x'}w^{x_2} d\Sigma _{x_2} + \int v^{y_{n+1}}\Phi ^{y_1\ldots y_ny_0}{}_{x_0;y_{n+1}}{\mathfrak T}^{x_0 x_2} d\Sigma _{x_2}. \nonumber \\ \end{aligned}$$
(263)

This form allows for a direct comparison to (29) and (30) in [51]. Explicitly, in terms of (258) and (259) the integrated moments from (141)–(143) are given by:

$$\begin{aligned} p^{y_1\ldots y_n y_0}:= & {} (-1)^n\!\!\int \limits _{\Sigma (\tau )}\!\!\Phi ^{y_1\ldots y_n y_0}{}_{x_0}{\mathfrak T}^{x_0 x_1}d\Sigma _{x_1},\end{aligned}$$
(264)
$$\begin{aligned} k^{y_2\ldots y_{n+1} y_0 y_1}:= & {} (-1)^n\!\!\int \limits _{\Sigma (\tau )}\!\!\Psi ^{{y_2}\ldots {y_{n+1} y_0 y_1}}{}_{x_0 x_1}{\mathfrak T}^{x_0 x_1}w^{x_2}d\Sigma _{x_2},\end{aligned}$$
(265)
$$\begin{aligned} h^{y_2\ldots y_{n+1}y_0 y_1}:= & {} (-1)^n\!\!\int \limits _{\Sigma (\tau )}\!\!\Psi ^{y_2 \ldots y_{n+1}y_0 y_1}{}_{x_0 x_1 }{\mathfrak S}^{x_0 x_1 x_2}d\Sigma _{x_2},\end{aligned}$$
(266)
$$\begin{aligned} q^{y_3\ldots y_{n+2}y_0 y_1 y_2}:= & {} (-1)^n\!\!\int \limits _{\Sigma (\tau )}\!\!\Psi ^{y_3 \ldots y_{n+2} y_0 y_1}{}_{x_0 x_1} g^{y_2}{}_{x_2}{\mathfrak S}^{x_0 x_1 x_2 }w^{x_3}d\Sigma _{x_3},\end{aligned}$$
(267)
$$\begin{aligned} \mu ^{y_2\ldots y_{n+1} y_0 y_1}:= & {} (-1)^n\!\!\int \limits _{\Sigma (\tau )}\!\!\Psi ^{y_2 \ldots y_{n+1} y_0 y_1}{}_{x_0 x_1}{\mathfrak t}^{x_0 x_1}w^{x_2}d\Sigma _{x_2},\end{aligned}$$
(268)
$$\begin{aligned} \xi ^{y_1\ldots y_{n}}:= & {} (-1)^n\!\!\int \limits _{\Sigma (\tau )}\!\!\sigma ^{y_1}\cdots \sigma ^{y_{n}}{\mathfrak L}_\mathrm{mat}w^{x_2}d\Sigma _{x_2}. \end{aligned}$$
(269)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Obukhov, Y.N., Puetzfeld, D. (2015). Multipolar Test Body Equations of Motion in Generalized Gravity Theories. In: Puetzfeld, D., Lämmerzahl, C., Schutz, B. (eds) Equations of Motion in Relativistic Gravity. Fundamental Theories of Physics, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-319-18335-0_2

Download citation

Publish with us

Policies and ethics