Skip to main content

Protein Quality Control in Brain Aging: Lessons from Protein Misfolding Disorders in Drosophila

  • Chapter
  • First Online:
  • 1090 Accesses

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 3))

Abstract

Protein quality control is an essential process for cellular survival. When protein damage occurs, a series of coordinated response mechanisms repair or degrade damaged proteins to avoid the accumulation of toxic protein aggregates and restore proteostasis. However, the amount of misfolded proteins increases during aging overwhelming the mechanisms responsible for protein quality control, thus leading to the development of several age-dependent neurodegenerative disorders. Interestingly, targeted expression of proteins causative of these diseases in flies reproduces the pathological behaviors seen in humans. This remarkable conservation provides a valuable experimental tool to elucidate the complex mechanisms associated with the maintenance of proteostasis. In this chapter, we summarize how Drosophila has contributed to understand the roles of the heat shock response, the unfolded protein response, autophagy and the ubiquitin proteasome system in brain aging and neurodegeneration associated with protein-misfolding disorders. In addition, we describe fundamental contributions of the fly system to the design of new therapeutic strategies for these devastating disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ali YO, Ruan K, Zhai RG (2012) NMNAT suppresses tau-induced neurodegeneration by promoting clearance of hyperphosphorylated tau oligomers in a Drosophila model of tauopathy. Hum Mol Genet 21(2):237–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295(5556):865–868

    Article  CAS  PubMed  Google Scholar 

  • Bilen J, Bonini NM (2007) Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila. PLoS Genet 3(10):1950–1964

    Article  CAS  PubMed  Google Scholar 

  • Bonini NM (2002) Chaperoning brain degeneration. Proc Natl Acad Sci USA 99(Suppl 4):16407–16411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown MK, Naidoo N (2012) The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol 3:263

    PubMed Central  PubMed  Google Scholar 

  • Carra S, Seguin SJ, Landry J (2008) HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 4(2):237–239

    Article  CAS  PubMed  Google Scholar 

  • Carra S, Brunsting JF, Lambert H, Landry J, Kampinga HH (2009) HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2{alpha} phosphorylation. J Biol Chem 284(9):5523–5532

    Article  CAS  PubMed  Google Scholar 

  • Casas-Tinto S, Zhang Y, Sanchez-Garcia J, Gomez-Velazquez M, Rincon-Limas DE, Fernandez-Funez P (2013) The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. Hum Mol Genet 20(11):2144–2160

    Article  Google Scholar 

  • Chan HY, Warrick JM, Gray-Board GL, Paulson HL, Bonini NM (2000) Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet 9(19):2811–2820

    Article  CAS  PubMed  Google Scholar 

  • Chan HY, Warrick JM, Andriola I, Merry D, Bonini NM (2002) Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum Mol Genet 11(23):2895–2904

    Article  CAS  PubMed  Google Scholar 

  • Chang YY, Neufeld TP (2010) Autophagy takes flight in Drosophila. FEBS Lett 584(7):1342–1349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen SF, Kang ML, Chen YC, Tang HW, Huang CW, Li WH, Lin CP, Wang CY, Wang PY, Chen GC, Wang HD (2012) Autophagy-related gene 7 is downstream of heat shock protein 27 in the regulation of eye morphology, polyglutamine toxicity, and lifespan in Drosophila. J Biomed Sci 19:52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40(2):427–446

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24(1):92–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305(5688):1292–1295

    Article  CAS  PubMed  Google Scholar 

  • Cushman-Nick M, Bonini NM, Shorter J (2014) Hsp104 suppresses polyglutamine-induced degeneration post onset in a Drosophila MJD/SCA3 model. PLoS Genet 9(9):e1003781

    Article  Google Scholar 

  • del Valle Rodriguez A, Didiano D, Desplan C (2011) Power tools for gene expression and clonal analysis in Drosophila. Nat Methods 9(1):47–55

    Article  PubMed  Google Scholar 

  • Douglas PM, Cyr DM (2009) Interplay between protein homeostasis networks in protein aggregation and proteotoxicity. Biopolymers 93(3): 229–236

    Google Scholar 

  • Fernandez-Chacon R, Wolfel M, Nishimune H, Tabares L, Schmitz F, Castellano-Munoz M, Rosenmund C, Montesinos ML, Sanes JR, Schneggenburger R, Sudhof TC (2004) The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron 42(2):237–251

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, She WC, Luchak JM, Martinez P, Turiegano E, Benito J, Capovilla M, Skinner PJ, McCall A, Canal I, Orr HT, Zoghbi HY, Botas J (2000) Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408(6808):101–106

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Funez P, Casas-Tinto S, Zhang Y, Gomez-Velazquez M, Morales-Garza MA, Cepeda-Nieto AC, Castilla J, Soto C, Rincon-Limas DE (2009) In vivo generation of neurotoxic prion protein: role for hsp70 in accumulation of misfolded isoforms. PLoS Genet 5(6):e1000507

    Article  PubMed Central  PubMed  Google Scholar 

  • Fleshner M, Johnson JD (2005) Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function. Int J Hyperth 21(5):457–471

    Article  CAS  Google Scholar 

  • Fouillet A, Levet C, Virgone A, Robin M, Dourlen P, Rieusset J, Belaidi E, Ovize M, Touret M, Nataf S, Mollereau B (2012) ER stress inhibits neuronal death by promoting autophagy. Autophagy 8(6):915–926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujikake N, Nagai Y, Popiel HA, Okamoto Y, Yamaguchi M, Toda T (2008) Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J Biol Chem 283(38):26188–26197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halliday M, Mallucci GR (2014) Targeting the unfolded protein response in neurodegeneration: a new approach to therapy. Neuropharmacology 76(Pt A):169–174

    Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274

    Article  CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  • Hetz C, Glimcher LH (2009) Fine-tuning of the unfolded protein response: assembling the IRE1alpha interactome. Mol Cell 35(5):551–561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hetz C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15(4):233–249

    Article  CAS  PubMed  Google Scholar 

  • Hetz C, Martinon F, Rodriguez D, Glimcher LH (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol Rev 91(4):1219–1243

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal M, Sandoval H, Zhang K, Bayat V, Bellen HJ (2012) Probing mechanisms that underlie human neurodegenerative diseases in Drosophila. Annu Rev Genet 46:371–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang MJ, Ryoo HD (2009) Suppression of retinal degeneration in Drosophila by stimulation of ER-associated degradation. Proc Natl Acad Sci USA 106(40):17043–17048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kazemi-Esfarjani P, Benzer S (2000) Genetic suppression of polyglutamine toxicity in Drosophila. Science 287(5459):1837–1840

    Article  CAS  PubMed  Google Scholar 

  • Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  CAS  PubMed  Google Scholar 

  • King V, Tower J (1999) Aging-specific expression of Drosophila hsp22. Dev Biol 207(1):107–118

    Article  CAS  PubMed  Google Scholar 

  • Koren J 3rd, Jinwal UK, Lee DC, Jones JR, Shults CL, Johnson AG, Anderson LJ, Dickey CA (2009) Chaperone signalling complexes in Alzheimer’s disease. J Cell Mol Med 13(4):619–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koumenis C (2006) ER stress, hypoxia tolerance and tumor progression. Curr Mol Med 6(1):55–69

    Article  CAS  PubMed  Google Scholar 

  • Kuo Y, Ren S, Lao U, Edgar BA, Wang T (2013) Suppression of polyglutamine protein toxicity by co-expression of a heat-shock protein 40 and a heat-shock protein 110. Cell Death Dis 4:e833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liao PC, Lin HY, Yuh CH, Yu LK, Wang HD (2008) The effect of neuronal expression of heat shock proteins 26 and 27 on lifespan, neurodegeneration, and apoptosis in Drosophila. Biochem Biophys Res Commun 376(4):637–641

    Article  CAS  PubMed  Google Scholar 

  • Ling D, Salvaterra PM (2010) Brain aging and Abeta(1)(-)(4)(2) neurotoxicity converge via deterioration in autophagy-lysosomal system: a conditional Drosophila model linking Alzheimer’s neurodegeneration with aging. Acta Neuropathol 121(2):183–191

    Article  PubMed  Google Scholar 

  • Ling D, Song HJ, Garza D, Neufeld TP, Salvaterra PM (2009) Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLoS ONE 4(1):e4201

    Article  PubMed Central  PubMed  Google Scholar 

  • Lipson KL, Fonseca SG, Urano F (2006) Endoplasmic reticulum stress-induced apoptosis and auto-immunity in diabetes. Curr Mol Med 6(1):71–77

    Article  CAS  PubMed  Google Scholar 

  • Loewen CA, Feany MB (2010) The unfolded protein response protects from tau neurotoxicity in vivo. PLoS ONE 5(9):e13084

    Article  PubMed Central  PubMed  Google Scholar 

  • Luo W, Rodina A, Chiosis G (2008) Heat shock protein 90: translation from cancer to Alzheimer’s disease treatment? BMC Neurosci 9(Suppl 2):S7

    Article  PubMed Central  PubMed  Google Scholar 

  • Luo W, Sun W, Taldone T, Rodina A, Chiosis G (2010) Heat shock protein 90 in neurodegenerative diseases. Mol Neurodegener 5:24

    Google Scholar 

  • Luo D, Bu Y, Ma J, Rajput S, He Y, Cai G, Liao DF, Cao D (2013) Heat shock protein 90-alpha mediates aldo-keto reductase 1B10 (AKR1B10) protein secretion through secretory lysosomes. J Biol Chem 288(51):36733–36740

    Google Scholar 

  • Maor G, Rencus-Lazar S, Filocamo M, Steller H, Segal D, Horowitz M (2013) Unfolded protein response in Gaucher disease: from human to Drosophila. Orphanet J Rare Dis 8:140

    Article  PubMed Central  PubMed  Google Scholar 

  • Matus S, Glimcher LH, Hetz C (2011) Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr Opin Cell Biol 23(2):239–252

    Article  CAS  PubMed  Google Scholar 

  • Miller LC, Swayne LA, Chen L, Feng ZP, Wacker JL, Muchowski PJ, Zamponi GW, Braun JE (2003) Cysteine string protein (CSP) inhibition of N-type calcium channels is blocked by mutant huntingtin. J Biol Chem 278(52):53072–53081

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Gene Dev 22(11):1427–1438

    Google Scholar 

  • Morrow G, Tanguay RM (2003) Heat shock proteins and aging in Drosophila melanogaster. Semin Cell Dev Biol 14(5):291–299

    Article  CAS  PubMed  Google Scholar 

  • Naidoo N (2009) The endoplasmic reticulum stress response and aging. Rev Neurosci 20(1):23–37

    Article  CAS  PubMed  Google Scholar 

  • Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo AM (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16(4):394–406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447(7146):859–863

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294

    Article  CAS  PubMed  Google Scholar 

  • Pittet JF, Lee H, Morabito D, Howard MB, Welch WJ, Mackersie RC (2002) Serum levels of Hsp 72 measured early after trauma correlate with survival. J Trauma 52(4):611–617

    Article  PubMed  Google Scholar 

  • Rasheva VI, Domingos PM (2009) Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 14(8):996–1007

    Article  PubMed  Google Scholar 

  • Ravikumar B, Rubinsztein DC (2006) Role of autophagy in the clearance of mutant huntingtin: a step towards therapy? Mol Aspects Med 27(5–6):520–527

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar B, Imarisio S, Sarkar S, O’Kane CJ, Rubinsztein DC (2008) Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 121(Pt 10):1649–1660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rincon-Limas DE, Jensen K, Fernandez-Funez P (2012) Drosophila models of proteinopathies: the little fly that could. Curr Pharm Des 18(8):1108–1122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roman G, Endo K, Zong L, Davis RL (2001) P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc Natl Acad Sci USA 98(22):12602–12607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryoo HD, Steller H (2007) Unfolded protein response in Drosophila: why another model can make it fly. Cell Cycle 6(7):830–835

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Kaarniranta K (2010) ER stress and hormetic regulation of the aging process. Ageing Res Rev 9(3):211–217

    Article  CAS  PubMed  Google Scholar 

  • Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4(2):176–184

    Article  CAS  PubMed  Google Scholar 

  • Soti C, Csermely P (2003) Aging and molecular chaperones. Exp Gerontol 38(10):1037–1040

    Article  CAS  PubMed  Google Scholar 

  • Tatar M, Khazaeli AA, Curtsinger JW (1997) Chaperoning extended life. Nature 390(6655):30

    Article  CAS  PubMed  Google Scholar 

  • Tonoki A, Kuranaga E, Tomioka T, Hamazaki J, Murata S, Tanaka K, Miura M (2009) Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol Cell Biol 29(4):1095–1106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valastyan JS, Lindquist S (2014) Mechanisms of protein-folding diseases at a glance. Dis Model Mech 7(1):9–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Velentzas PD, Velentzas AD, Mpakou VE, Antonelou MH, Margaritis LH, Papassideri IS, Stravopodis DJ (2013) Detrimental effects of proteasome inhibition activity in Drosophila melanogaster: implication of ER stress, autophagy, and apoptosis. Cell Biol Toxicol 29(1):13–37

    Article  CAS  PubMed  Google Scholar 

  • Voisine C, Pedersen JS, Morimoto RI (2010) Chaperone networks: tipping the balance in protein folding diseases. Neurobiol Dis 40(1):12–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vos MJ, Zijlstra MP, Kanon B, van Waarde-Verhagen MA, Brunt ER, Oosterveld-Hut HM, Carra S, Sibon OC, Kampinga HH (2010) HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 19(23):4677–4693

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Lao U, Edgar BA (2009a) TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease. J Cell Biol 186(5):703–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM, Mandelkow E (2009b) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18(21):4153–4170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang AM, Miyata Y, Klinedinst S, Peng HM, Chua JP, Komiyama T, Li X, Morishima Y, Merry DE, Pratt WB, Osawa Y, Collins CA, Gestwicki JE, Lieberman AP (2013) Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat Chem Biol 9(2):112–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23(4):425–428

    Article  CAS  PubMed  Google Scholar 

  • Warrick JM, Morabito LM, Bilen J, Gordesky-Gold B, Faust LZ, Paulson HL, Bonini NM (2005) Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. Mol Cell 18(1):37–48

    Article  CAS  PubMed  Google Scholar 

  • Waza M, Adachi H, Katsuno M, Minamiyama M, Tanaka F, Sobue G (2006) Alleviating neurodegeneration by an anticancer agent: an Hsp90 inhibitor (17-AAG). Ann N Y Acad Sci 1086:21–34

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Tower J (2009) Expression of hsp22 and hsp70 transgenes is partially predictive of Drosophila survival under normal and stress conditions. J Gerontol A Biol Sci Med Sci 64(8):828–838

    Article  PubMed  Google Scholar 

  • Young JC (2010) Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol 88(2):291–300

    Article  CAS  PubMed  Google Scholar 

  • Zhai RG, Cao Y, Hiesinger PR, Zhou Y, Mehta SQ, Schulze KL, Verstreken P, Bellen HJ (2006) Drosophila NMNAT maintains neural integrity independent of its NAD synthesis activity. PLoS Biol 4(12):e416

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhai RG, Zhang F, Hiesinger PR, Cao Y, Haueter CM, Bellen HJ (2008) NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature 452(7189):887–891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Casas-Tinto S, Rincon-Limas DE, Fernandez-Funez P (2014) Combined pharmacological induction of Hsp70 suppresses prion protein neurotoxicity in Drosophila. PLoS ONE 9(2):e88522

    Article  PubMed Central  PubMed  Google Scholar 

  • Zinsmaier KE (2010) Cysteine-string protein’s neuroprotective role. J Neurogenet 24(3):120–132

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to all authors whose work could not be cited due to space constraints. This work was supported in part by NIH grant R21NS081356 to DER-L, and by a McKnight Brain Institute Research Development Award and start-up funds from the UF Department of Neurology to PF-F and DER-L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pedro Fernandez-Funez or Diego E. Rincon-Limas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Mena, L., Fernandez-Funez, P., Rincon-Limas, D.E. (2015). Protein Quality Control in Brain Aging: Lessons from Protein Misfolding Disorders in Drosophila . In: Vaiserman, A., Moskalev, A., Pasyukova, E. (eds) Life Extension. Healthy Ageing and Longevity, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-18326-8_8

Download citation

Publish with us

Policies and ethics