Skip to main content

Superoxide Dismutase (SOD) Genes and Aging in Drosophila

  • Chapter
  • First Online:
Life Extension

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 3))

Abstract

Since their discovery by McCord and Fridovich the superoxide dismutase (SOD) enzymes have been of particular interest to the field of aging. The Drosophila SOD genes are required for normal oxidative stress resistance and life span, and have been targets for investigation of mechanisms of aging. The ability of SOD genes to affect Drosophila life span is dependent upon the genetic background, including the sex of the animal, as well as the dietary environment. There is increasing understanding of the role of the SODs in signaling pathways that modulate aging. The Cu/ZnSOD is important in linking diet to life span, and MnSOD can activate the mitochondrial unfolded protein response and increase life span. The SOD genes also modulate survival in Drosophila models of human disease. The conservation of SOD genes and functions in Drosophila combined with the availability of powerful genetic and transgenic technologies promises to keep Drosophila at the forefront of research on aging and the role of SOD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bahadorani S, Mukai ST, Rabie J, Beckman JS, Phillips JP, Hilliker AJ (2013) Expression of zinc-deficient human superoxide dismutase in Drosophila neurons produces a locomotor defect linked to mitochondrial dysfunction. Neurobiol Aging 34:2322–2330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker BM, Haynes CM (2011) Mitochondrial protein quality control during biogenesis and aging. Trends Biochem Sci 36:254–261

    Article  CAS  PubMed  Google Scholar 

  • Bakthavatchalu V, Dey S, Xu Y, Noel T, Jungsuwadee P, Holley AK, Dhar SK, Batinic-Haberle I, St Clair DK (2012) Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polγ against UV-induced inactivation. Oncogene 31:2129–2139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bauer G (2014) Targeting extracellular ROS signaling of tumor cells. Anticancer Res 34:1467–1482

    CAS  PubMed  Google Scholar 

  • Bernard KE, Parkes TL, Merritt TJ (2011) A model of oxidative stress management: moderation of carbohydrate metabolizing enzymes in SOD1-null Drosophila melanogaster. PLoS One 6:e24518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhandari P, Song M, Chen Y, Burelle Y, Dorn GW 2nd (2014) Mitochondrial contagion induced by Parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin. Circ Res 114:257–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bieschke ET, Wheeler JC, Tower J (1998) Doxycycline-induced transgene expression during Drosophila development and aging. Mol Gen Genet MGG 258:571–579

    Article  CAS  PubMed  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  • Cabreiro F, Ackerman D, Doonan R, Araiz C, Back P, Papp D, Braeckman BP, Gems D (2011) Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radic Biol Med 51:1575–1582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campos JC, Gomes KM, Ferreira JC (2013) Impact of exercise training on redox signaling in cardiovascular diseases. Food Chem Toxicol 62:107–119 (an international journal published for the British Industrial Biological Research Association)

    Article  CAS  PubMed  Google Scholar 

  • Celotto AM, Liu Z, Vandemark AP, Palladino MJ (2012) A novel Drosophila SOD2 mutant demonstrates a role for mitochondrial ROS in neurodevelopment and disease. Brain Behav 2:424–434

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S, Xiong Y (2011) Tumour suppressor SIRT35 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep 12:534–541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cho J, Hur JH, Walker DW (2011) The role of mitochondria in Drosophila aging. Exp Gerontol 46:331–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curtis C, Landis GN, Folk D, Wehr NB, Hoe N, Waskar M, Abdueva D, Skvortsov D, Ford D, Luu A, Badrinath A, Levine RL, Bradley TJ, Tavare S, Tower J (2007) Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes. Genome Biol 8:R262

    Article  PubMed Central  PubMed  Google Scholar 

  • Dorn GW 2nd, Clark CF, Eschenbacher WH, Kang MY, Engelhard JT, Warner SJ, Matkovich SJ, Jowdy CC (2011) MARF and Opa1 control mitochondrial and cardiac function in Drosophila. Circ Res 108:12–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duttaroy A, Parkes T, Emtage P, Kirby K, Boulianne GL, Wang X, Hilliker AJ, Phillips JP (1997) The manganese superoxide dismutase gene of Drosophila: structure, expression, and evidence for regulation by MAP kinase. DNA Cell Biol 16:391–399

    Article  CAS  PubMed  Google Scholar 

  • Duttaroy A, Paul A, Kundu M, Belton A (2003) A Sod2 null mutation confers severely reduced adult life span in Drosophila. Genetics 165:2295–2299

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elia AJ, Parkes TL, Kirby K, St George-Hyslop P, Boulianne GL, Phillips JP, Hilliker AJ (1999) Expression of human FALS SOD in motorneurons of Drosophila. Free Radic Biol Med 26:1332–1338

    Article  CAS  PubMed  Google Scholar 

  • Favrin G, Bean DM, Bilsland E, Boyer H, Fischer BE, Russell S, Crowther DC, Baylis HA, Oliver SG, Giannakou ME (2013) Identification of novel modifiers of Aβ toxicity by transcriptomic analysis in the fruitfly. Sci Rep 3:3512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fukai T, Folz RJ, Landmesser U, Harrison DG (2002) Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 55:239–249

    Article  CAS  PubMed  Google Scholar 

  • Godenschwege T, Forde R, Davis CP, Paul A, Beckwith K, Duttaroy A (2009) Mitochondrial superoxide radicals differentially affect muscle activity and neural function. Genetics 183:175–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griswold CM, Matthews AL, Bewley KE, Mahaffey JW (1993) Molecular characterization of rescue of acatalasemic mutants of Drosophila melanogaster. Genetics 134:731–788

    Google Scholar 

  • Hari R, Burde V, Arking R (1998) Immunological confirmation of elevated levels of CuZn superoxide dismutase protein in an artificially selected long-lived strain of Drosophila melanogaster. Exp Gerontol 33:227–237

    Article  CAS  PubMed  Google Scholar 

  • Haynes CM, Fiorese CJ, Lin YF (2013) Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends Cell Biol 23:311–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hitchler MJ, Domann FE (2014) Regulation of CuZnSOD and its redox signaling potential: implications for amyotrophic lateral sclerosis. Antioxid Redox Signal 20:1590–1598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13:1385–1393

    CAS  PubMed  Google Scholar 

  • Hughes KA, Reynolds RM (2005) Evolutionary and mechanistic theories of aging. Annu Rev Entomol 50:421–445

    Article  CAS  PubMed  Google Scholar 

  • Islam R, Kumimoto EL, Bao H, Zhang B (2012) ALS-linked SOD1 in glial cells enhances β-N-Methylamino L-Alanine (BMAA)-induced toxicity in Drosophila. F1000Res 1:47

    Google Scholar 

  • Jacobson J, Lambert AJ, Portero-Otin M, Pamplona R, Magwere T, Miwa S, Driege Y, Brand MD, Partridge L (2010) Biomarkers of aging in Drosophila. Aging Cell 9(4):466–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • James BP, Staatz WD, Wilkinson ST, Meuillet E, Powis G (2009) Superoxide dismutase is regulated by LAMMER kinase in Drosophila and human cells. Free Radic Biol Med 46:821–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung I, Kim TY, Kim-Ha J (2011) Identification of Drosophila SOD3 and its protective role against phototoxic damage to cells. FEBS Lett 585:1973–1978

    Article  CAS  PubMed  Google Scholar 

  • Kaiser M, Gasser M, Ackermann R, Stearns SC (1997) P element inserts in transgenic flies: a cautionary tale. Heredity 78:1–11

    Article  CAS  PubMed  Google Scholar 

  • Kirby K, Hu J, Hilliker AJ, Phillips JP (2002) RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc Natl Acad Sci USA 99:16162–16167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirby K, Jensen LT, Binnington J, Hilliker AJ, Ulloa J, Culotta VC, Phillips JP (2008) Instability of superoxide dismutase 1 of Drosophila in mutants deficient for its cognate copper chaperone. J Biol Chem 283:35393–35401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koh H, Kim H, Kim MJ, Park J, Lee HJ, Chung J (2012) Silent information regulator 2 (Sir2) and Forkhead box O (FOXO) complement mitochondrial dysfunction and dopaminergic neuron loss in Drosophila PTEN-induced kinase 1 (PINK1) null mutant. J Biol Chem 287:12750–12758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumimoto EL, Fore TR, Zhang B (2013) Transcriptome profiling following neuronal and glial expression of ALS-linked SOD1 in Drosophila. G3 (Bethesda) 3:695–708

    Google Scholar 

  • Landis GN, Tower J (2005) Superoxide dismutase evolution and life span regulation. Mech Ageing Dev 126:365–379

    Article  CAS  PubMed  Google Scholar 

  • Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE, Carrick J, Tavare S, Tower J (2004) Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci USA 101:7663–7668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Landis G, Shen J, Tower J (2012) Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster. Aging (Albany NY) 4:768–789

    CAS  Google Scholar 

  • Lin YR, Kim K, Yang Y, Ivessa A, Sadoshima J, Park Y (2011) Regulation of longevity by regulator of G-protein signaling protein, Loco. Aging Cell 10:438–447

    Article  CAS  PubMed  Google Scholar 

  • Liu HN, Tjostheim S, Dasilva K, Taylor D, Zhao B, Rakhit R, Brown M, Chakrabartty A, McLaurin J, Robertson J (2012) Targeting of monomer/misfolded SOD1 as a therapeutic strategy for amyotrophic lateral sclerosis. J Neurosci 32:8791–8799

    Article  CAS  PubMed  Google Scholar 

  • Lovejoy DB, Guillemin GJ (2014) The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci 6:173

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin I, Jones MA, Grotewiel M (2009a) Manipulation of Sod1 expression ubiquitously, but not in the nervous system or muscle, impacts age-related parameters in Drosophila. FEBS Lett 583:2308–2314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin I, Jones MA, Rhodenizer D, Zheng J, Warrick JM, Seroude L, Grotewiel M (2009b) Sod2 knock-down in the musculature has whole organism consequences in Drosophila. Free Radic Biol Med 47(6):803–813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  • Meli M, Frey J, Perier C (2003) Native protein glycoxidation and aging. J Nutr Health Aging 7:263–266

    CAS  PubMed  Google Scholar 

  • Melkani GC, Trujillo AS, Ramos R, Bodmer R, Bernstein SI, Ocorr K (2013) Huntington’s disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart. PLoS Genet 9:e1004024

    Article  PubMed Central  PubMed  Google Scholar 

  • Missirlis F, Hu J, Kirby K, Hilliker AJ, Rouault TA, Phillips JP (2003) Compartment-specific protection of iron-sulfur proteins by superoxide dismutase. J Biol Chem 278:47365–47369

    Article  CAS  PubMed  Google Scholar 

  • Mockett RJ, Orr WC, Rahmandar JJ, Benes JJ, Radyuk SN, Klichko VI, Sohal RS (1999) Overexpression of Mn-containing superoxide dismutase in transgenic Drosophila melanogaster. Arch Biochem Biophys 371:260–269

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Forde R, Belton A, Duttaroy A (2011) SOD2, the principal scavenger of mitochondrial superoxide, is dispensable for embryogenesis and imaginal tissue development but essential for adult survival. Fly (Austin) 5:39–46

    Article  CAS  Google Scholar 

  • Muyderman H, Chen T (2014) Mitochondrial dysfunction in amyotrophic lateral sclerosis—a valid pharmacological target? Br J Pharmacol 171:2191–2205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R, Chapple S, Cohen G, Feher J, Grune T, Lengyel G, Mann GE, Pamplona R, Poli G, Portero-Otin M, Riahi Y, Salvayre R, Sasson S, Serrano J, Shamni O, Siems W, Siow RC, Wiswedel I, Zarkovic K, Zarkovic N (2010) Pathological aspects of lipid peroxidation. Free Radic Res 44:1125–1171

    Article  CAS  PubMed  Google Scholar 

  • Oberley-Deegan RE, Regan EA, Kinnula VL, Crapo JD (2009) Extracellular superoxide dismutase and risk of COPD. COPD 6:307–312

    Article  PubMed Central  PubMed  Google Scholar 

  • Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276:38388–38393

    Article  CAS  PubMed  Google Scholar 

  • Orr WC, Sohal RS (1992) The effects of catalase gene overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys 297:35–41

    Article  CAS  PubMed  Google Scholar 

  • Orr WC, Sohal RJ (1993) Effects of Cu-Zn superoxide dismutase overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys 301:34–40

    Article  CAS  PubMed  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    Article  CAS  PubMed  Google Scholar 

  • Orr WC, Mockett RJ, Benes JJ, Sohal RS (2003) Effects of overexpression of copper-zinc and manganese superoxide dismutases, catalase, and thioredoxin reductase genes on longevity in Drosophila melanogaster. J Biol Chem 278:26418–26422

    Article  CAS  PubMed  Google Scholar 

  • Owusu-Ansah E, Song W, Perrimon N (2013) Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155:699–712

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Chen S, Weng C, Call G, Zhu D, Tang H, Zhang N, Xie T (2007) Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 1:458–469

    Article  CAS  PubMed  Google Scholar 

  • Parker JD, Parker KM, Keller L (2004) Molecular phylogenetic evidence for an extracellular Cu Zn superoxide dismutase gene in insects. Insect Mol Biol 13:587–594

    Article  CAS  PubMed  Google Scholar 

  • Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Boulianne GL (1998) Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet 19:171–174

    Article  CAS  PubMed  Google Scholar 

  • Paul A, Belton A, Nag S, Martin I, Grotewiel MS, Duttaroy A (2007) Reduced mitochondrial SOD displays mortality characteristics reminiscent of natural aging. Mech Ageing Dev 128:706–716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Phillips JP, Campbell SD, Michaud D, Charbonneau M, Hilliker AJ (1989) Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci USA 86:2761–2765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piazza N, Hayes M, Martin I, Duttaroy A, Grotewiel M, Wessells R (2009) Multiple measures of functionality exhibit progressive decline in a parallel, stochastic fashion in Drosophila Sod2 null mutants. Biogerontology 10:637–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pimenta de Castro I, Costa AC, Lam D, Tufi R, Fedele V, Moisoi N, Dinsdale D, Deas E, Loh SH, Martins LM (2012) Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster. Cell Death Differ 19:1308–1316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12:662–667

    Article  CAS  PubMed  Google Scholar 

  • Radyuk SN, Klichko VI, Spinola B, Sohal RS, Orr WC (2001) The peroxiredoxin gene family in Drosophila melanogaster. Free Radic Biol Med 31:1090–1100

    Article  CAS  PubMed  Google Scholar 

  • Radyuk SN, Klichko VI, Orr WC (2004) Profiling Cu, Zn-superoxide dismutase expression in Drosophila melanogaster—a critical regulatory role for intron/exon sequence within the coding domain. Gene 328:37–48

    Article  CAS  PubMed  Google Scholar 

  • Reddi AR, Culotta VC (2013) SOD1 integrates signals from oxygen and glucose to repress respiration. Cell 152:224–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reveillaud I, Niedzwiecki A, Bensch KG, Fleming JE (1991) Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance of oxidative stress. Mol Cell Biol 11:632–640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  • Saini N, Oelhafen S, Hua H, Georgiev O, Schaffner W, Bueler H (2010) Extended lifespan of Drosophila parkin mutants through sequestration of redox-active metals and enhancement of anti-oxidative pathways. Neurobiol Dis 40:82–92

    Article  CAS  PubMed  Google Scholar 

  • Salmon AB, Richardson A, Perez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48:642–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwarze SR, Weindruch R, Aiken JM (1998) Oxidative stress and aging reduce COX I RNA and cytochrome oxidase activity in Drosophila. Free Radic Biol Med 25:740–747

    Article  CAS  PubMed  Google Scholar 

  • Seto NO, Hayashi S, Tener GM (1989) Cloning, sequence analysis and chromosomal localization of the Cu-Zn superoxide dismutase gene of Drosophila melanogaster. Gene 75:85–92

    Article  CAS  PubMed  Google Scholar 

  • Seto NOL, Hayashi S, Tener GM (1990) Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life span. Proc Nat Acad Sci (USA) 87:4270–4274

    Article  CAS  Google Scholar 

  • Shen J, Tower J (2013) Aging, MnSOD, and hormesis mechanisms converge on liver mUPR. Cell Cycle 12:3237–3238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simm A (2013) Protein glycation during aging and in cardiovascular disease. J Proteomics 92:248–259

    Article  CAS  PubMed  Google Scholar 

  • Soderberg JA, Birse RT, Nassel DR (2011) Insulin production and signaling in renal tubules of Drosophila is under control of tachykinin-related peptide and regulates stress resistance. PLoS One 6:e19866

    Article  PubMed Central  PubMed  Google Scholar 

  • Sohal RS, Arnold L, Orr WC (1990) Effect of age on superoxide dismutase, catalase, glutathione reductase, inorganic peroxides, TBA-reactive material, GSH/GSSG, NADPH/NADP+ and NADH/NAD+ in Drosophila melanogaster. Mech Ageing Dev 56:223–235

    Article  CAS  PubMed  Google Scholar 

  • Spencer CC, Howell CE, Wright AR, Promislow DE (2003) Testing an ‘aging gene’ in long-lived drosophila strains: increased longevity depends on sex and genetic background. Aging Cell 2:123–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  CAS  PubMed  Google Scholar 

  • Stavely BE, Phillips JP, Hilliker AJ (1990) Phenotypic consequences of copper/zinc superoxide dismutase overexpression in Drosophila melanogaster. Genome 33:867–872 National Research Council Canada (Genome/Conseil national de recherches Canada)

    Article  Google Scholar 

  • Struhl G, Basler K (1993) Organizing activity of wingless protein in Drosophila. Cell 72:527–540

    Article  CAS  PubMed  Google Scholar 

  • Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276:38084–38089

    CAS  PubMed  Google Scholar 

  • Sun J, Tower J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19:216–228

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun J, Folk D, Bradley TJ, Tower J (2002) Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161:661–672

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun J, Molitor J, Tower J (2004) Effects of simultaneous over-expression of Cu/ZnSOD and MnSOD on Drosophila melanogaster life span. Mech Ageing Dev 125:341–349

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Komatsu T, Lim J, Laslo M, Yolitz J, Wang C, Poirier L, Alberico T, Zou S (2012) Nutrient-dependent requirement for SOD1 in lifespan extension by protein restriction in Drosophila melanogaster. Aging Cell 11:783–793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun Y, Yolitz J, Alberico T, Sun X, Zou S (2014) Lifespan extension by cranberry supplementation partially requires SOD2 and is life stage independent. Exp Gerontol 50:57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tatar M (1999) Transgenes in the analysis of life span and fitness. Am Nat 154(supplement):S67–S81

    Article  Google Scholar 

  • Tower J (1996) Aging mechanisms in fruit files. BioEssays 18:799–807

    Article  CAS  PubMed  Google Scholar 

  • Tower J (2006) Sex-specific regulation of aging and apoptosis. Mech Ageing Dev 127:705–718

    Article  PubMed  Google Scholar 

  • Tower J, Landis G, Gao R, Luan A, Lee J, Sun Y (2013) Variegated expression of Hsp22 transgenic reporters indicates cell-specific patterns of aging in Drosophila oenocytes. J Gerontol A Biol Sci Med Sci 55:109–118

    Google Scholar 

  • Vrailas-Mortimer A, del Rivero T, Mukherjee S, Nag S, Gaitanidis A, Kadas D, Consoulas C, Duttaroy A, Sanyal S (2011) A muscle-specific p38 MAPK/Mef2/MnSOD pathway regulates stress, motor function, and life span in Drosophila. Dev Cell 21:783–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang YC, Lee CM, Lee LC, Tung LC, Hsieh-Li HM, Lee-Chen GJ, Su MT (2011) Mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of spinocerebellar ataxia type 12 (SCA12). J Biol Chem 286:21742–21754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watson MR, Lagow RD, Xu K, Zhang B, Bonini NM (2008) A drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1. J Biol Chem 283:24972–24981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weisiger RA, Fridovich I (1973) Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J Biol Chem 248:4793–4796

    CAS  PubMed  Google Scholar 

  • Wicks S, Bain N, Duttaroy A, Hilliker AJ, Phillips JP (2009) Hypoxia rescues early mortality conferred by superoxide dismutase deficiency. Free Radic Biol Med 46:176–181

    Article  CAS  PubMed  Google Scholar 

  • Yu BP (1993) Oxidative damage by free radicals and lipid peroxidation in aging. In: Yu BP (ed) Free radicals in aging. CRC Press Inc., Boca Raton, pp 57–88

    Google Scholar 

  • Zarse K, Schmeisser S, Groth M, Priebe S, Beuster G, Kuhlow D, Guthke R, Platzer M, Kahn CR, Ristow M (2012) Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab 15:451–465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Department of Health and Human Services (AG011833) and by pilot project funds from the Southern California Environmental Health Sciences Center (5P30ES007048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Tower .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tower, J. (2015). Superoxide Dismutase (SOD) Genes and Aging in Drosophila . In: Vaiserman, A., Moskalev, A., Pasyukova, E. (eds) Life Extension. Healthy Ageing and Longevity, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-18326-8_3

Download citation

Publish with us

Policies and ethics