Skip to main content

Gadd45 Proteins in Aging and Longevity of Mammals and Drosophila

  • Chapter
  • First Online:
Life Extension

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 3))

Abstract

Proteins of the GADD45 family play an essential role in the integration of cellular response to a wide variety of stressors and maintenance of homeostasis at the level of a cell, a tissue and an organism. The basic homeostatic processes are implicated in the determination of the progression of aging and development of major age-related disorders. Moreover, GADD45s mediate several well-known aging-associated signaling pathways through the interaction with such proteins as FOXO, p53, ATM, ATR, SIRT1, mTOR and some other. These reasons point out the role of the GADD45 proteins in the aging and life span regulation. Indeed, we have shown that constitutive and conditional (mifepristone-inducible) D-GADD45 overexpression in Drosophila melanogaster nervous system extends median and maximum life span, and increases the resistance to genotoxic, oxidative, thermal stress, and starvation. The life span-extending effect was apparently due to more efficient recognition and repair of DNA damage, because the spontaneous DNA damage in the larva neuroblasts with D-GADD45 overexpression was reduced. However, data obtained for flies with conditional ubiquitous D-GADD45 overexpression demonstrates a negative effect of this intervention on the life span and stress resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi A, Lord KA, Hoffman-Liebermann B, Liebermann DA (1991) Sequence and expression of a cDNA encoding MyD118: a novel myeloid differentiation primary response gene induced by multiple cytokines. Oncogene 6(1):165–167

    CAS  PubMed  Google Scholar 

  • Amundson SA, Zhan Q, Penn LZ, Fornace AJ Jr (1998) Myc suppresses induction of the growth arrest genes gadd34, gadd45, and gadd153 by DNA-damaging agents. Oncogene 17(17):2149–2154

    Article  CAS  PubMed  Google Scholar 

  • Azam N, Vairapandi M, Zhang W, Hoffman B, Liebermann DA (2001) Interaction of CR6 (GADD45γ) with proliferating cell nuclear antigen impedes negative growth control. J Biol Chem 276(4):2766–2774

    Article  CAS  PubMed  Google Scholar 

  • Balliet AG, Hatton KS, Hoffman B, Liebermann DA (2001) Comparative analysis of the genetic structure and chromosomal location of the murine MyD118 (Gadd45beta) gene. DNA Cell Biol 20(4):239–247

    Article  CAS  PubMed  Google Scholar 

  • Barreto G, Schäfer A, Marhold J, Stach D, Swaminathan SK, Handa V, Döderlein G, Maltry N, Wu W, Lyko F, Niehrs C (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445(7128):671–675

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2008) Prevention of cancer by inhibiting ageing. Cancer Biol Ther 7(10):1520–1524

    Article  CAS  PubMed  Google Scholar 

  • Bonelli P, Tuccillo FM, Calemma R, Pezzetti F, Borrelli A, Martinelli R, De Rosa A, Esposito D, Palaia R, Castello G (2011) Changes in the gene expression profile of gastric cancer cells in response to ibuprofen: a gene pathway analysis. Pharmacogenomics J 11(6):412–428

    Article  CAS  PubMed  Google Scholar 

  • Bortoff KD, Keeton AB, Franklin JL, Messina JL (2010) Anti-inflammatory action of insulin via induction of Gadd45-β transcription by the mTOR signaling pathway. Hepat Med 2001(2):79–85

    PubMed  Google Scholar 

  • Budovsky A, Tacutu R, Yanai H, Abramovich A, Wolfson M, Fraifeld V (2009) Common gene signature of cancer and longevity. Mech Ageing Dev 130(1–2):33–39

    Article  CAS  PubMed  Google Scholar 

  • Carrier F, Georgel PT, Pourquier P, Blake M, Kontny HU, Antinore MJ, Gariboldi M, Myers TG, Weinstein JN, Pommier Y, Fornace AJJ (1999) Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol Cell Biol 19(3):1673–1685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang HC, Tsai J, Guo YL, Huang YH, Tsai HN, Tsai PC, Huang W (2003) Differential UVC-induced gadd45 gene expression in xeroderma pigmentosum cells. Biochem Biophys Res Commun 305(4):1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Cheung KJJr, Mitchell D, Lin P, Li G (2001) The tumor suppressor candidate p33ING1 mediates repair of UV-damaged DNA. Cancer Res 61(13):4974–4977

    CAS  PubMed  Google Scholar 

  • Chuang JY, Wang SA, Yang WB, Yang HC, Hung CY, Su TP, Chang WC, Hung JJ (2012) Sp1 phosphorylation by cyclin-dependent kinase 1/cyclin B1 represses its DNA-binding activity during mitosis in cancer cells. Oncogene 31(47):4946–4959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C (2009) Molecular inflammation: underpinnings of ageing and age-related diseases. Ageing Res Rev 8(1):18–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coppé JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cortellino S, Xu J, Sannai M et al (2011) Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146(1):67–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cretu A, Sha X, Tront J, Hoffman B, Liebermann DA (2009) Stress sensor Gadd45 genes as therapeutic targets in cancer. Cancer Ther 7(A):268–276

    Google Scholar 

  • De Laurenzi V, Melino G (2000) Evolution of functions within the p53/p63/p73 family. Ann N Y Acad Sci 926:90–100

    Article  PubMed  Google Scholar 

  • De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, Franzoso G (2001) Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414(6861):308–313

    Article  PubMed  Google Scholar 

  • Du F, Wang L, Zhang Y, Jiang W, Sheng H, Cao Q, Wu J, Shen B, Shen T, Zhang JZ, Bao C, Li D, Li N (2008) Role of GADD45 beta in the regulation of synovial fluid T cell apoptosis in rheumatoid arthritis. Clin Immunol 128(2):238–247

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Zhang Z, Tong T (2005) Irreversible cellular senescence induced by prolonged exposure to H2O2 involves DNA-damage-and-repair genes and telomere shortening. Int J Biochem Cell Biol 37(7):1407–1420

    Article  CAS  PubMed  Google Scholar 

  • Edwards MG, Sarkar D, Klopp R, Morrow JD, Weindruch R, Prolla TA (2004) Impairment of the transcriptional responses to oxidative stress in the heart of aged C57BL/6 mice. Ann N Y Acad Sci 1019:85–95

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS (1998) Regulation of p53 downstream genes. Semin Cancer Biol 8(5):345–357

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Richter G, Cereseto A, Beadling C, Smith KA (1999) Cytokine response gene 6 induces p21 and regulates both cell growth and arrest. Oncogene 18(47):6573–6582

    Article  CAS  PubMed  Google Scholar 

  • Finch CE (1990) Longevity, senescence, and the genome. University of Chicago Press, Chicago

    Google Scholar 

  • Flicek P, Amode MR, Barrell D et al (2011) Ensembl 2011. Nucleic Acids Res 39(Database issue):D800–D806

    Google Scholar 

  • Fornace AJ Jr, Amundson SA, Do KT, Meltzer P, Trent J, Bittner M (2002) Stress-gene induction by low-dose gamma irradiation. Mil Med 167(2 Suppl):13–15

    PubMed  Google Scholar 

  • Friedman MJ, Li S, Li XJ (2009) Activation of gene transcription by heat shock protein 27 may contribute to its neuronal protection. J Biol Chem 284(41):27944–27951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Furukawa-Hibi Y, Yoshida-Araki K, Ohta T, Ikeda K, Motoyama N (2002) FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress. J Biol Chem 277(30):26729–26732

    Article  CAS  PubMed  Google Scholar 

  • Gant TW, Baus PR, Clothier B, Riley J, Davies R, Judah DJ, Edwards RE, George E, Greaves P, Smith AG (2003) Gene expression profiles associated with inflammation, fibrosis, and cholestasis in mouse liver after griseofulvin. EHP Toxicogenomics 111(1T):37–43

    CAS  PubMed  Google Scholar 

  • Geifman-Holtzman O, Xiong Y, Holtzman EJ (2013) Gadd45 stress sensors in preeclampsia. Adv Exp Med Biol 793:121–129

    Article  CAS  PubMed  Google Scholar 

  • Guarente L (2011) Sirtuins, ageing, and metabolism. Cold Spring Harb Symp Quant Biol 76:81–90

    Article  CAS  PubMed  Google Scholar 

  • Guillouf C, Grana X, Selvakumaran M, De Luca A, Giordano A, Hoffman B, Liebermann DA (1995) Dissection of the genetic programs of p53-mediated G1 growth arrest and apoptosis: blocking p53-induced apoptosis unmasks G1 arrest. Blood 85(10):2691–2698

    CAS  PubMed  Google Scholar 

  • Gupta M, Gupta SK, Balliet AG, Hollander MC, Fornace AJ, Hoffman B, Liebermann DA (2005) Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene 24(48):7170–7179

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Gupta SK, Hoffman B, Liebermann DA (2006) Gadd45a and Gadd45b protect hematopoietic cells from UV-induced apoptosis via distinct signaling pathways, including p38 activation and JNK inhibition. J Biol Chem 281(26):17552–17558

    Article  CAS  PubMed  Google Scholar 

  • Hall PA, Kearsey JM, Coates PJ, Norman DG, Warbrick E, Cox LS (1995) Characterisation of the interaction between PCNA and Gadd45. Oncogene 10(12):2427–2433

    CAS  PubMed  Google Scholar 

  • Halmosi R, Berente Z, Osz E, Toth K, Literati-Nagy P, Sumegi B (2001) Effect of poly(ADP-ribose) polymerase inhibitors on the ischemia-reperfusion-induced oxidative cell damage and mitochondrial metabolism in Langendorff heart perfusion system. Mol Pharmacol 59(6):1497–1505

    CAS  PubMed  Google Scholar 

  • Hamza MS, Pott S, Vega VB, Thomsen JS, Kandhadayar GS, Ng PW, Chiu KP, Pettersson S, Wei CL, Ruan Y, Liu ET (2009) De-novo identification of PPARgamma/RXR binding sites and direct targets during adipogenesis. PLoS ONE 4(3):e4907

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harkin DP, Bean JM, Miklos D, Song YH, Truong VB, Englert C, Christians FC, Ellisen LW, Maheswaran S, Oliner JD, Haber DA (1999) Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97(5):575–586

    Article  CAS  PubMed  Google Scholar 

  • Hartman AR, Ford JM (2002) BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat Genet 32(1):180–184

    Article  CAS  PubMed  Google Scholar 

  • Higgins S, Wong SH, Richner M, Rowe CL, Newgreen DF, Werther GA, Russo VC (2009) Fibroblast growth factor 2 reactivates G1 checkpoint in SK-N-MC cells via regulation of p21, inhibitor of differentiation genes (Id1-3), and epithelium-mesenchyme transition-like events. Endocrinology 150(9):4044–4055

    Article  CAS  PubMed  Google Scholar 

  • Higgs MR, Lerat H, Pawlotsky JM (2010) Downregulation of Gadd45beta expression by hepatitis C virus leads to defective cell cycle arrest. Cancer Res 70(12):4901–4911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hildesheim J, Belova GI, Tyner SD, Zhou X, Vardanian L, Fornace AJJ (2004) Gadd45a regulates matrix metalloproteinases by suppressing DeltaNp63alpha and beta-catenin via p38 MAP kinase and APC complex activation. Oncogene 23(10):1829–1837

    Article  CAS  PubMed  Google Scholar 

  • Hildesheim J, Bulavin DV, Anver MR, Alvord WG, Hollander MC, Vardanian L, Fornace AJJ (2002) Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res 62(24):7305–7315

    CAS  PubMed  Google Scholar 

  • Hoffman B, Liebermann DA (2007) Role of gadd45 in myeloid cells in response to hematopoietic stress. Blood Cells Mol Dis 39(3):344–347. doi:S1079-9796(07)00127-1

    Google Scholar 

  • Hoffman B, Liebermann DA (2013) Gadd45 in modulation of solid tumors and leukemia. Adv Exp Med Biol 793:21–33

    Article  CAS  PubMed  Google Scholar 

  • Hoggard N, Hey Y, Brintnell B, James L, Jones D, Mitchell E, Weissenbach J, Varley JM (1995) Identification and cloning in yeast artificial chromosomes of a region of elevated loss of heterozygosity on chromosome 1p31.1 in human breast cancer. Genomics 30(2):233–243

    Article  CAS  PubMed  Google Scholar 

  • Hollander MC, Sheikh MS, Bulavin DV, Lundgren K, Augeri-Henmueller L, Shehee R, Molinaro TA, Kim KE, Tolosa E, Ashwell JD, Rosenberg MP, Zhan Q, Fernandez-Salguero PM, Morgan WF, Deng CX, Fornace AJ Jr (1999) Genomic instability in Gadd45a-deficient mice. Nat Genet 23(2):176–184

    Article  CAS  PubMed  Google Scholar 

  • Hollander MC, Kovalsky O, Salvador JM, Kim KE, Patterson AD, Haines DC, Fornace AJ Jr (2001) Dimethylbenzanthracene carcinogenesis in Gadd45α-null mice is associated with decreased DNA repair and increased mutation frequency. Cancer Res 61(6):2487–2491

    CAS  PubMed  Google Scholar 

  • Hsu YC, Huang TY, Chen MJ (2014) Therapeutic ROS targeting of GADD45γ in the induction of G2/M arrest in primary human colorectal cancer cell lines by cucurbitacin E. Cell Death Dis 5:e1198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hubbard BP, Sinclair DA (2014) Small molecule SIRT1 activators for the treatment of ageing and age-related diseases. Trends Pharmacol Sci 35(3):146–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Igotti Abramova MV, Pojidaeva AK, Filippova EA, Gnedina OO, Svetlikova SB, Pospelov VA (2014) HDAC inhibitors induce apoptosis but not cellular senescence in Gadd45α-deficient E1A+ Ras cells. Int J Biochem Cell Biol 51:102–110

    Article  CAS  PubMed  Google Scholar 

  • Jackson JG, Pereira-Smith OM (2006) p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Res 66(17):8356–8360

    Article  CAS  PubMed  Google Scholar 

  • Jang ER, Choi JD, Park MA, Jeong G, Cho H, Lee JS (2010) ATM modulates transcription in response to histone deacetylase inhibition as part of its DNA damage response. Exp Mol Med 42(3):195–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ji C, Mehrian-Shai R, Chan C, Hsu YH, Kaplowitz N (2005) Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding. Alcohol Clin Exp Res 29(8):1496–1503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang F, Wang Z (2004) Gadd45gamma is androgen-responsive and growth-inhibitory in prostate cancer cells. Mol Cell Endocrinol 213(2):121–129. doi:10.1016/j.mce.2003.10.050

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Zhao H, Fan F, Blanck P, Fan W, Colchagie AB, Fornace AJ Jr, Zhan Q (2000) BRCA1 activation of the GADD45 promoter. Oncogene 19(35):4050–4057

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Fan F, Fan W, Zhao H, Tong T, Blanck P, Alomo I, Rajasekaran B, Zhan Q (2001) Transcription factors Oct-1 and NF-YA regulate the p53-independent induction of the GADD45 following DNA damage. Oncogene 20(21):2683–2690

    Article  CAS  PubMed  Google Scholar 

  • Jinawath N, Vasoontara C, Yap KL, Thiaville MM, Nakayama K, Wang TL, Shih IM (2009) NAC-1, a potential stem cell pluripotency factor, contributes to paclitaxel resistance in ovarian cancer through inactivating Gadd45 pathway. Oncogene 28(18):1941–1948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnen H, González-Silva L, Carramolino L, Flores JM, Torres M, Salvador JM (2013) Gadd45g is essential for primary sex determination, male fertility and testis development. PLoS ONE 8(3):e58751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ju S, Zhu Y, Liu L, Dai S, Li C, Chen E, He Y, Zhang X, Lu B (2009) Gadd45b and Gadd45g are important for anti-tumor immune responses. Eur J Immunol 39(11):3010–3018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ju Y, Xu T, Zhang H, Yu A (2014) FOXO1-dependent DNA damage repair is regulated by JNK in lung cancer cells. Int J Oncol 44(4):1284–1292

    CAS  PubMed  Google Scholar 

  • Jung HJ, Kim EH, Mun JY, Park S, Smith ML, Han SS, Seo YR (2007) Base excision DNA repair defect in Gadd45a-deficient cells. Oncogene 26(54):7517–7525

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71(4):587–597

    Article  CAS  PubMed  Google Scholar 

  • Keil E, Höcker R, Schuster M, Essmann F, Ueffing N, Hoffman B, Liebermann DA, Pfeffer K, Schulze-Osthoff K, Schmitz I (2013) Phosphorylation of Atg5 by the Gadd45β-MEKK4-p38 pathway inhibits autophagy. Cell Death Differ 20(2):321–332

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ko YG, Kang YS, Park H, Seol W, Kim J, Kim T, Park HS, Choi EJ, Kim S (2001) Apoptosis signal-regulating kinase 1 controls the proapoptotic function of death-associated protein (Daxx) in the cytoplasm. J Biol Chem 276(42):39103–39106

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Furukawa-Hibi Y, Chen C, Horio Y, Isobe K, Ikeda K, Motoyama N (2005) SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med 16(2):237–243

    CAS  PubMed  Google Scholar 

  • Kovalsky O, Lung FD, Roller PP, Fornace AJ Jr (2001) Oligomerization of human Gadd45a protein. J Biol Chem 276(42):39330–39339

    Article  CAS  PubMed  Google Scholar 

  • Kumar SR, Hosokawa M, Miyashita K (2013) Fucoxanthin: a marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar Drugs 11(12):5130–5147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le May N, Egly JM, Coin F (2010) True lies: the double life of the nucleotide excision repair factors in transcription and DNA repair. J Nucleic Acids 2010:616342

    PubMed Central  PubMed  Google Scholar 

  • Li X, Ding X, Adrian TE (2003) Arsenic trioxide induces apoptosis in pancreatic cancer cells via changes in cell cycle, caspase activation, and GADD expression. Pancreas 27(2):174–179

    Article  CAS  PubMed  Google Scholar 

  • Liebermann DA, Hoffman B (1994) Differentiation primary response genes and proto-oncogenes as positive and negative regulators of terminal hematopoietic cell differentiation. Stem Cells 12(4):352–369

    Article  CAS  PubMed  Google Scholar 

  • Liebermann DA, Hoffman B (2003) Myeloid differentiation (MyD) primary response genes in hematopoiesis. Blood Cells Mol Dis 31(2):213–228

    Article  CAS  PubMed  Google Scholar 

  • Liebermann DA, Tront JS, Sha X, Mukherjee K, Mohamed-Hadley A, Hoffman B (2011) Gadd45 stress sensors in malignancy and leukemia. Crit Rev Oncog 16(1–2):129–140

    Article  PubMed Central  PubMed  Google Scholar 

  • Lindstrom TM, Robinson WH (2010) Rheumatoid arthritis: a role for immunosenescence? J Am Geriatr Soc 58(8):1565–1575

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu L, Tran E, Zhao Y, Huang Y, Flavell R, Lu B (2005) Gadd45 beta and Gadd45 gamma are critical for regulating autoimmunity. J Exp Med 202(10):1341–1347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • López-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1(6–7):303–314

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lu B, Yu H, Chow C, Li B, Zheng W, Davis RJ, Flavell RA (2001) GADD45gamma mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector TH1 cells. Immunity 14(5):583–590

    Article  CAS  PubMed  Google Scholar 

  • Ma DK, Guo JU, Ming GL, Song H (2009) DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle 8(10):1526–1531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacLachlan TK, Somasundaram K, Sgagias M, Shifman Y, Muschel RJ, Cowan KH, El-Deiry WS (2000) BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J Biol Chem 275(4):2777–2785

    Article  CAS  PubMed  Google Scholar 

  • Mao Z, Tian X, Van Meter M, Ke Z, Gorbunova V, Seluanov A (2012) Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proc Natl Acad Sci U S A 109(29):11800–11805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michaelis KA, Knox AJ, Xu M, Kiseljak-Vassiliades K, Edwards MG, Geraci M, Kleinschmidt-DeMasters BK, Lillehei KO, Wierman ME (2011) Identification of growth arrest and DNA-damage-inducible gene beta (GADD45beta) as a novel tumor suppressor in pituitary gonadotrope tumors. Endocrinology 152(10):3603–3613

    Article  CAS  PubMed  Google Scholar 

  • Moskalev A, Plyusnina E, Shaposhnikov M, Shilova L, Kazachenok A, Zhavoronkov A (2012a) The role of D-GADD45 in oxidative, thermal and genotoxic stress resistance. Cell Cycle 11(22):4222–4241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moskalev A, Smit-McBride Z, Shaposhnikov M, Plyusnina E, Zhavoronkov A, Budovsky A, Tacutu R, Fraifeld VE (2012b) Gadd45 proteins: relevance to ageing, longevity and age-related pathologies. Ageing Res Rev 11(1):51–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moskalev A, Aliper A, Smit-McBride Z, Buzdin A, Zhavoronkov A (2014) Genetics and epigenetics of ageing and longevity. Cell Cycle 13(7):1063–1077. doi:10.4161/cc.28433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muñoz-Najar U, Sedivy JM (2011) Epigenetic control of ageing. Antioxid Redox Signal 14(2):241–259

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Na YK, Lee SM, Hong HS, Kim JB, Park JY, Kim DS (2010) Hypermethylation of growth arrest DNA-damage-inducible gene 45 in non-small cell lung cancer and its relationship with clinicopathologic features. Mol Cells 30(1):89–92

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Hara T, Hibi M, Hirano T, Miyajima A (1999) A novel oncostatin M-inducible gene OIG37 forms a gene family with MyD118 and GADD45 and negatively regulates cell growth. J Biol Chem 274(35):24766–24772

    Article  CAS  PubMed  Google Scholar 

  • Nakayama A, Kawasaki H, Jin C, Munekata E, Taira K, Yokoyama KK (2001) Transcriptional regulation of interferon gamma gene by p300 co-activator. Nucleic Acids Res 1:89–90

    Article  Google Scholar 

  • Niehrs C, Schäfer A (2012) Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol 22(4):220–227

    Article  CAS  PubMed  Google Scholar 

  • O’Prey J, Brown J, Fleming J, Harrison PR (2003) Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem Pharmacol 66(11):2075–2088

    Article  PubMed  CAS  Google Scholar 

  • Oh-Hashi K, Maruyama W, Isobe K (2001) Peroxynitrite induces GADD34, 45, and 153 VIA p38 MAPK in human neuroblastoma SH-SY5Y cells. Free Radic Biol Med 30(2):213–221

    Article  CAS  PubMed  Google Scholar 

  • Ozawa S, Gamou T, Habano W, Inoue K, Yoshida M, Nishikawa A, Nemoto K, Degawa M (2011) Altered expression of GADD45 genes during the development of chemical-mediated liver hypertrophy and liver tumor promotion in rats. J Toxicol Sci 36(5):613–623

    Article  CAS  PubMed  Google Scholar 

  • Papa S, Zazzeroni F, Bubici C, Jayawardena S, Alvarez K, Matsuda S, Nguyen DU, Pham CG, Nelsbach AH, Melis T, De Smaele E, Tang WJ, D’Adamio L, Franzoso G (2004a) Gadd45 beta mediates the NF-kappa B suppression of JNK signalling by targeting MKK7/JNKK2. Nat Cell Biol 6(2):146–153

    Article  CAS  PubMed  Google Scholar 

  • Papa S, Zazzeroni F, Pham CG, Bubici C, Franzoso G (2004b) Linking JNK signaling to NF-kappaB: a key to survival. J Cell Sci 117(Pt 22):5197–5208

    Article  CAS  PubMed  Google Scholar 

  • Papa S, Zazzeroni F, Fu YX, Bubici C, Alvarez K, Dean K, Christiansen PA, Anders RA, Franzoso G (2008) Gadd45beta promotes hepatocyte survival during liver regeneration in mice by modulating JNK signaling. J Clin Invest 118(5):1911–1923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S, Hallinan J, Wipat A, Saretzki G, Rudolph KL, Kirkwood TB, von Zglinicki T (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Peretz G, Bakhrat A, Abdu U (2007) Expression of the Drosophila melanogaster GADD45 homolog (CG11086) affects egg asymmetric development that is mediated by the c-Jun N-terminal kinase pathway. Genetics 177(3):1691–1702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Platanias LC (2003) Map kinase signaling pathways and hematologic malignancies. Blood 101(12):4667–4679

    Article  CAS  PubMed  Google Scholar 

  • Plyusnina EN, Shaposhnikov MV, Moskalev AA (2011) Increase of Drosophila melanogaster lifespan due to D-GADD45 overexpression in the nervous system. Biogerontology 12(3):211–226

    Article  CAS  PubMed  Google Scholar 

  • Plyusnina EN, Shaposhnikov MV, Moskalev AA (2012) Geroprotective effects of activation of D-GADD45 DNA reparation gene in Drosophila melanogaster nervous system. Bull Exp Biol Med 152(3):340–343

    Article  CAS  PubMed  Google Scholar 

  • Qiu W, Zhou B, Zou H, Liu X, Chu PG, Lopez R, Shih J, Chung C, Yen Y (2004) Hypermethylation of growth arrest DNA damage-inducible gene 45 beta promoter in human hepatocellular carcinoma. Am J Pathol 165(5):1689–1699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135(7):1201–1212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reed BD, Charos AE, Szekely AM, Weissman SM, Snyder M (2008) Genome-wide occupancy of SREBP1 and its partners NFY and SP1 reveals novel functional roles and combinatorial regulation of distinct classes of genes. PLoS Genet 4(7):e1000133

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Saha A, Kuzuhara T, Echigo N, Suganuma M, Fujiki H (2010) New role of (-)-epicatechin in enhancing the induction of growth inhibition and apoptosis in human lung cancer cells by curcumin. Cancer Prev Res (Phila) 3(8):953–962

    Article  CAS  Google Scholar 

  • Salerno DM, Tront JS, Hoffman B, Liebermann DA (2012) Gadd45a and Gadd45b modulate innate immune functions of granulocytes and macrophages by differential regulation of p38 and JNK signaling. J Cell Physiol 227(11):3613–3620

    Article  CAS  PubMed  Google Scholar 

  • Salvador JM, Brown-Clay JD, Fornace AJJ (2013) Gadd45 in stress signaling, cell cycle control, and apoptosis. Adv Exp Med Biol 793:1–19

    Article  CAS  PubMed  Google Scholar 

  • Santiard-Baron D, Gosset P, Nicole A, Sinet PM, Christen Y, Ceballos-Picot I (1999) Identification of beta-amyloid-responsive genes by RNA differential display: early induction of a DNA damage-inducible gene, gadd45. Exp Neurol 158(1):206–213

    Article  CAS  PubMed  Google Scholar 

  • Santiard-Baron D, Lacoste A, Ellouk-Achard S, Soulie C, Nicole A, Sarasin A, Ceballos-Picot I (2001) The amyloid peptide induces early genotoxic damage in human preneuron NT2. Mutat Res 479(1–2):113–120

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, Yamada KA, Imai S (2013) Sirt1 extends life span and delays ageing in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab 18(3):416–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Satomi Y (2012) Fucoxanthin induces GADD45A expression and G1 arrest with SAPK/JNK activation in LNCap human prostate cancer cells. Anticancer Res 32(3):807–813

    CAS  PubMed  Google Scholar 

  • Schäfer A, Schomacher L, Barreto G, Döderlein G, Niehrs C (2010) Gemcitabine functions epigenetically by inhibiting repair mediated DNA demethylation. PLoS ONE 5(11):e14060

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schmitz KM, Schmitt N, Hoffmann-Rohrer U, Schäfer A, Grummt I, Mayer C (2009) TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol Cell 33(3):344–353

    Article  CAS  PubMed  Google Scholar 

  • Schmitz I (2013) Gadd45 proteins in immunity. Adv Exp Med Biol 793:51–68. doi:10.1007/978-1-4614-8289-5_4

    Article  CAS  PubMed  Google Scholar 

  • Schomacher L (2013) Mammalian DNA demethylation: multiple faces and upstream regulation. Epigenetics 8(7):679–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schrag JD, Jiralerspong S, Banville M, Jaramillo ML, O’Connor-McCourt MD (2008) The crystal structure and dimerization interface of GADD45gamma. Proc Natl Acad Sci U S A 105(18):6566–6571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scuto A, Kirschbaum M, Buettner R, Kujawski M, Cermak JM, Atadja P, Jove R (2013) SIRT1 activation enhances HDAC inhibition-mediated upregulation of GADD45G by repressing the binding of NF-κB/STAT3 complex to its promoter in malignant lymphoid cells. Cell Death Dis 4:e635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Selvakumaran M, Lin HK, Sjin RT, Reed JC, Liebermann DA, Hoffman B (1994) The novel primary response gene MyD118 and the proto-oncogenes myb, myc, and bcl-2 modulate transforming growth factor beta 1-induced apoptosis of myeloid leukemia cells. Mol Cell Biol 14(4):2352–2360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS (2009) Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res 16(1):45–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O’Connor PM, Fornace AJ Jr (1994) Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266(5189):1376–1380

    Article  CAS  PubMed  Google Scholar 

  • Stokes AH, Freeman WM, Mitchell SG, Burnette TA, Hellmann GM, Vrana KE (2002) Induction of GADD45 and GADD153 in neuroblastoma cells by dopamine-induced toxicity. Neurotoxicology 23(6):675–684

    Article  CAS  PubMed  Google Scholar 

  • Sultan FA, Sweatt JD (2013) The role of the Gadd45 family in the nervous system: a focus on neurodevelopment, neuronal injury, and cognitive neuroepigenetics. Adv Exp Med Biol 793:81–119

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Gong R, Wan B, Huang X, Wu C, Zhang X, Zhao S, Yu L (2003) GADD45gamma, down-regulated in 65 % hepatocellular carcinoma (HCC) from 23 chinese patients, inhibits cell growth and induces cell cycle G2/M arrest for hepatoma Hep-G2 cell lines. Mol Biol Rep 30(4):249–253

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Fontaine JM, Rest JS, Shelden EA, Welsh MJ, Benndorf R (2004) Interaction of human HSP22 (HSPB8) with other small heat shock proteins. J Biol Chem 279(4):2394–2402

    Article  CAS  PubMed  Google Scholar 

  • Sytnikova YA, Kubarenko AV, Schäfer A, Weber AN, Niehrs C (2011) Gadd45a is an RNA binding protein and is localized in nuclear speckles. PLoS ONE 6(1):e14500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takeda S, Matsuo K, Yaji K, Okajima-Miyazaki S, Harada M, Miyoshi H, Okamoto Y, Amamoto T, Shindo M, Omiecinski CJ, Aramaki H (2011) (–)-Xanthatin selectively induces GADD45γ and stimulates caspase-independent cell death in human breast cancer MDA-MB-231 cells. Chem Res Toxicol 24(6):855–865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takeda S, Nishimura H, Koyachi K, Matsumoto K, Yoshida K, Okamoto Y, Amamoto T, Shindo M, Aramaki H (2013) (–)-Xanthatin induces the prolonged expression of c-Fos through an N-acetyl-L-cysteine (NAC)-sensitive mechanism in human breast cancer MDA-MB-231 cells. J Toxicol Sci 38(4):547–557

    Article  CAS  PubMed  Google Scholar 

  • Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95(4):521–530

    Article  CAS  PubMed  Google Scholar 

  • Thum T, Borlak J (2008) LOX-1 receptor blockade abrogates oxLDL-induced oxidative DNA damage and prevents activation of the transcriptional repressor Oct-1 in human coronary arterial endothelium. J Biol Chem 283(28):19456–19464. doi:M708309200

    Google Scholar 

  • Tian J, Locker J (2013) Gadd45 in the liver: signal transduction and transcriptional mechanisms. Adv Exp Med Biol 793:69–80

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Huang H, Hoffman B, Liebermann DA, Ledda-Columbano GM, Columbano A, Locker J (2011) Gadd45β is an inducible coactivator of transcription that facilitates rapid liver growth in mice. J Clin Invest 121(11):4491–4502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tornatore L, Marasco D, Dathan N, Vitale RM, Benedetti E, Papa S, Franzoso G, Ruvo M, Monti SM (2008) Gadd45beta forms a homodimeric complex that binds tightly to MKK7. J Mol Biol 378(1):97–111

    Article  CAS  PubMed  Google Scholar 

  • Torp R, Su JH, Deng G, Cotman CW (1998) GADD45 is induced in Alzheimer’s disease, and protects against apoptosis in vitro. Neurobiol Dis 5(4):245–252

    Article  CAS  PubMed  Google Scholar 

  • Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr, DiStefano PS, Chiang LW, Greenberg ME (2002) DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296(5567):530–534

    Article  CAS  PubMed  Google Scholar 

  • Tront JS, Hoffman B, Liebermann DA (2006) Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. Cancer Res 66(17):8448–8454

    Article  CAS  PubMed  Google Scholar 

  • Tront JS, Huang Y, Fornace AJJ, Hoffman B, Liebermann DA (2010) Gadd45a functions as a promoter or suppressor of breast cancer dependent on the oncogenic stress. Cancer Res 70(23):9671–9681

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vairapandi M, Balliet AG, Fornace AJ Jr, Hoffman B, Liebermann DA (1996) The differentiation primary response gene MyD118, related to GADD45, encodes for a nuclear protein which interacts with PCNA and p21WAF1/CIP1. Oncogene 12(12):2579–2594

    CAS  PubMed  Google Scholar 

  • Vairapandi M, Azam N, Balliet AG, Hoffman B, Liebermann DA (2000) Characterization of MyD118, Gadd45, and proliferating cell nuclear antigen (PCNA) interacting domains. PCNA impedes MyD118 AND Gadd45-mediated negative growth control. J Biol Chem 275(22):16810–16819

    Article  CAS  PubMed  Google Scholar 

  • Vairapandi M, Balliet AG, Hoffman B, Liebermann DA (2002) GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol 192(3):327–338

    Article  CAS  PubMed  Google Scholar 

  • Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, Hollander MC, O’Connor PM, Fornace AJ Jr, Harris CC (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA 96(7):3706–3711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitlock NA, Lindsey K, Agarwal N, Crosson CE, Ma JX (2005) Heat shock protein 27 delays Ca2+-induced cell death in a caspase-dependent and -independent manner in rat retinal ganglion cells. Invest Ophthalmol Vis Sci 46(3):1085–1091

    Article  PubMed  Google Scholar 

  • Wolfson M, Budovsky A, Tacutu R, Fraifeld V (2009) The signaling hubs at the crossroad of longevity and age-related disease networks. Int J Biochem Cell Biol 41(3):516–520

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zhang X, Bardag-Gorce F, Robel RC, Aguilo J, Chen L, Zeng Y, Hwang K, French SW, Lu SC, Wan YJ (2004) Retinoid X receptor alpha regulates glutathione homeostasis and xenobiotic detoxification processes in mouse liver. Mol Pharmacol 65(3):550–557

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Liebermann DA, Tront JS, Holtzman EJ, Huang Y, Hoffman B, Geifman-Holtzman O (2009) Gadd45a stress signaling regulates sFlt-1 expression in preeclampsia. J Cell Physiol 220(3):632–639

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Liebermann DA, Holtzman EJ, Jeronis S, Hoffman B, Geifman-Holtzman O (2013) Preeclampsia-associated stresses activate Gadd45a signaling and sFlt-1 in placental explants. J Cell Physiol 228(2):362–370

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Manicone A, Coursen JD, Linke SP, Nagashima M, Forgues M, Wang XW (2000) Identification of a functional domain in a GADD45-mediated G2/M checkpoint. J Biol Chem 275(47):36892–36898

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhu H, Murphy TL, Ouyang W, Murphy KM (2001) IL-18-stimulated GADD45 beta required in cytokine-induced, but not TCR-induced IFN-gamma production. Nat Immunol 2(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Song L, Huang C (2009) Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Curr Cancer Drug Targets 9(8):915–930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin F, Bruemmer D, Blaschke F, Hsueh WA, Law RE, Herle AJ (2004) Signaling pathways involved in induction of GADD45 gene expression and apoptosis by troglitazone in human MCF-7 breast carcinoma cells. Oncogene 23(26):4614–4623

    Article  CAS  PubMed  Google Scholar 

  • Ying J, Srivastava G, Hsieh WS, Gao Z, Murray P, Liao SK, Ambinder R, Tao Q (2005) The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res 11(18):6442–6449

    Article  CAS  PubMed  Google Scholar 

  • Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace AJJ, Liebermann DA, Bottinger EP, Roberts AB (2003) Transforming growth factor-beta-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem 278(44):43001–43007

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Maeda A, Horinaka M, Shiraishi T, Nakata S, Wakada M, Yogosawa S, Sakai T (2005) Quercetin induces gadd45 expression through a p53-independent pathway. Oncol Rep 14(5):1299–1303

    CAS  PubMed  Google Scholar 

  • Zerbini LF, Wang Y, Czibere A, Correa RG, Cho JY, Ijiri K, Wei W, Joseph M, Gu X, Grall F, Goldring MB, Zhou JR, Libermann TA (2004) NF-kappa B-mediated repression of growth arrest- and DNA-damage-inducible proteins 45alpha and gamma is essential for cancer cell survival. Proc Natl Acad Sci U S A 101(37):13618–13623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zerbini LF, Libermann TA (2005) Life and death in cancer. GADD45 alpha and gamma are critical regulators of NF-kappaB mediated escape from programmed cell death. Cell Cycle 4(1):18–20

    Article  CAS  PubMed  Google Scholar 

  • Zhan Q, Lord KA, Alamo I Jr, Hollander MC, Carrier F, Ron D, Kohn KW, Hoffman B, Liebermann DA, Fornace AJ Jr (1994) The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol 14(4):2361–2371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhan Q, Kontny U, Iglesias M, Alamo I Jr, Yu K, Hollander MC, Woodworth CD, Fornace AJ Jr (1999) Inhibitory effect of Bcl-2 on p53-mediated transactivation following genotoxic stress. Oncogene 18(2):297–304

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Bae I, Krishnaraju K, Azam N, Fan W, Smith K, Hoffman B, Liebermann DA (1999) CR6: A third member in the MyD118 and Gadd45 gene family which functions in negative growth control. Oncogene 18(35):4899–4907

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Hoffman B, Liebermann DA (2001) Ectopic expression of MyD118/Gadd45/CR6 (Gadd45beta/alpha/gamma) sensitizes neoplastic cells to genotoxic stress-induced apoptosis. Int J Oncol 18(4):749–757

    PubMed  Google Scholar 

  • Zhang N, Ahsan MH, Zhu L, Sambucetti LC, Purchio AF, West DB (2005) NF-kappaB and not the MAPK signaling pathway regulates GADD45beta expression during acute inflammation. J Biol Chem 280(22):21400–21408

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Li T, Shao Y, Zhang C, Wu Q, Yang H, Zhang J, Guan M, Yu B, Wan J (2010) Semi-quantitative detection of GADD45-gamma methylation levels in gastric, colorectal and pancreatic cancers using methylation-sensitive high-resolution melting analysis. J Cancer Res Clin Oncol 136(8):1267–1273

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yang Z, Liu Y (2014a) GADD45 proteins: roles in cellular senescence and tumor development. Exp Biol Med (Maywood) 239(7):773–778

    Article  CAS  Google Scholar 

  • Zhang L, Yang Z, Ma A, Qu Y, Xia S, Xu D, Ge C, Qiu B, Xia Q, Li J, Liu Y (2014b) Growth arrest and DNA damage 45G down-regulation contributes to Janus kinase/signal transducer and activator of transcription 3 activation and cellular senescence evasion in hepatocellular carcinoma. Hepatology 59(1):178–189

    Article  CAS  PubMed  Google Scholar 

  • Zhu N, Shao Y, Xu L, Yu L, Sun L (2009) Gadd45-alpha and Gadd45-gamma utilize p38 and JNK signaling pathways to induce cell cycle G2/M arrest in Hep-G2 hepatoma cells. Mol Biol Rep 36(8):2075–2085

    Article  CAS  PubMed  Google Scholar 

  • Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Russian Science Foundation grant N 14-50-00060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Moskalev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moskalev, A.A., Proshkina, E.N., Shaposhnikov, M.V. (2015). Gadd45 Proteins in Aging and Longevity of Mammals and Drosophila . In: Vaiserman, A., Moskalev, A., Pasyukova, E. (eds) Life Extension. Healthy Ageing and Longevity, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-18326-8_2

Download citation

Publish with us

Policies and ethics