Skip to main content

Atmosphere, Metabolism and Longevity

  • Chapter
  • First Online:
Life Extension

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 3))

Abstract

Are the current atmosphere gaseous composition and unlimited oxygen consumption mode optimal for the health and longevity? Food and oxygen are the two tightly related substances critical for the life support. Recommendations to restrict food consumption below the ad libitum level are recognized and have many followers worldwide. No analogous suggestions concerning the O2 consumption are known. Living beings originated and most part of their evolution occurred in atmospheres with extraordinarily high CO2 and low O2. In contrast, O2 content in the modern atmosphere is exceeding CO2 more than 500 fold. Such dramatic changes should provoke conflicting situations. According to the proposed ‘nostalgia’ concept, living systems somehow ‘remember’ and are striving to return to the less conflicting primordial environments. Maintenance of Drosophila in hypoxic atmospheres (5, 10 and 15 % of O2) started from the 20 day extended their mean but not maximum life span. Optimal hypoxia was lower for the older flies (15 % O2 started from the 40 days and 18 % for the 50 days). Data accumulated do not exclude that modified atmospheres and diets could have additive positive effects on longevity. People in the developed countries are already living in artificial atmospheres with optimized physical parameters—the air is conditioned, filtered, ozonized, ionized, humidified, deodorized etc. However, the same air composition could hardly be optimal for everyone and in all situations. Supplementation of the air conditioners with additional gadgets could ensure optimization of the atmosphere gaseous composition, as well. Despite the importance and technical availability, little is known about efficiency of the individually and situationally optimized atmospheres in human aging and longevity.

Omne vivum ex ovo in hypoxia et hypercapnia

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aristotle (2007) On longevity and shortness of life. The University of Adelaide Library. eBooks@Adelaide

    Google Scholar 

  • Beerling DJ, Berner RA (2005) Feedbacks and the coevolution of plants and atmospheric CO2. Proc Natl Acad Sci USA 102:1302–1305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bell EL, Klimova TA, Eisenbart J, Schumacker PT, Chandel NS (2007) Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol Cell Biol 27:5737–5745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berner RA (1999) Atmospheric oxygen over Phanerozoic time. Proc Natl Acad Sci USA 96:10955–10957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burtscher M (2013) Effects of living at higher altitudes on mortality: a narrative review. Aging Dis 5:274–280

    PubMed Central  PubMed  Google Scholar 

  • Cheung SG, Chan HY, Liu CC, Shin PK (2008) Effect of prolonged hypoxia on food consumption, respiration, growth and reproduction in marine scavenging gastropod Nassarius festivus. Mar Pollut Bull 57:280–286

    Article  CAS  PubMed  Google Scholar 

  • Copeland JM, Cho J, Lo T Jr, Hur JH, Bahadorani S, Arabyan T et al (2009) Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 13:1591–1598

    Article  Google Scholar 

  • Davy P, Allsopp R (2011) Hypoxia: are stem cells in it for the long run? Cell Cycle 10:206–211

    Article  CAS  PubMed  Google Scholar 

  • Everaert N, Willemsen H, Willems E, Franssens L, Decuypere E (2011) Acid-base regulation during embryonic development in amniotes, with particular reference to birds. Respir Physiol Neurobiol 178:118–128

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Bussière F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–644

    Article  CAS  PubMed  Google Scholar 

  • Forgan LG, Forster ME (2010) Oxygen-dependence of metabolic rate in the muscles of craniates. J Comp Physiol B 180:715–729

    Article  CAS  PubMed  Google Scholar 

  • Frolkis VV, Muradian KhK (1991) Life span prolongation. CRC Press, Boca Raton

    Google Scholar 

  • Gilmour KM, Perry SF (2009) Carbonic anhydrase and acid-base regulation in fish. J Exp Biol 212:1647–1661

    Article  CAS  PubMed  Google Scholar 

  • Goldblatt C, Lenton TM, Watson AJ (2006) Biostability of atmospheric oxygen and the great oxidation. Nature 443:643–645

    Article  Google Scholar 

  • Harrison J, Frazier MR, Henry JR, Kaiser A, Klok CJ, Rascón B (2006) Responses of terrestrial insects to hypoxia or hyperoxia. Respir Physiol Neurobiol 154:4–17

    Article  CAS  PubMed  Google Scholar 

  • Holland HD (2006) The oxygenation of the earth and oceans. Phil Trans R Soc B 361:903–915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Honda S, Ishii N, Suzuki K, Matsuo M (1993) Oxygen-dependent perturbation of life span and aging rate in the nematode. J Gerontol 48:B57–B61

    Article  CAS  PubMed  Google Scholar 

  • Huey RB, Ward PD (2005) Hypoxia, global warming, and terrestrial late Permian extinctions. Science 308:398–401

    Article  CAS  PubMed  Google Scholar 

  • Hwang AB, Lee SJ (2011) Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection. Aging (Albany NY) 3:304–310

    CAS  Google Scholar 

  • Imtaiyaz HM, Shajee B, Waheed A, Ahmad F, Sly WS (2013) Structure, function and applications of carbonic anhydrase isozymes. Bioorg Med Chem 21:1570–1582

    Article  Google Scholar 

  • Kayser B (1992) Nutrition and high altitude exposure. Int J Sports Med 13:129–132

    Article  Google Scholar 

  • Klok CJ, Harrison JF (2009) Atmospheric hypoxia limits selection for large body size in insects. PLoS ONE 4:e3876

    Article  PubMed Central  PubMed  Google Scholar 

  • Kurbel S (2014) Animal evolution and atmospheric po2: is there a link between gradual animal adaptation to terrain elevation due to ural orogeny and survival of subsequent hypoxic periods? Theor Biol Med Model 11:47

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee SJ, Hwang AB, Kenyon C (2010) Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol 20:2131–2136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leiser SF, Fletcher M, Begun A, Kaeberlein M (2013) Life-span extension from hypoxia in Caenorhabditis elegans requires both HIF-1 and DAF-16 and is antagonized by SKN-1. J Gerontol A Biol Sci Med Sci 68:1135–1144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loeb J, Northrop JH (1917) What determines the duration of life in metazoa? Proc Natl Acad Sci U S A 3:382–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315

    Article  CAS  PubMed  Google Scholar 

  • Mills DB, Ward LM, Jones C, Sweeten B, Forth M, Treusch AH et al (2014) Oxygen requirements of the earliest animals. Proc Natl Acad Sci U S A 111:4168–4172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muradian KK (2008) Artificial atmosphere, rejuvenation and longevity. Probl Aging Longevity 17:457–477 (in Russian)

    Google Scholar 

  • Muradian K (2013) “Pull and push back” concepts of longevity and life span extension. Biogerontology 14:687–691

    Article  PubMed  Google Scholar 

  • Netzer NC, Breitenbach M (2010) Metabolic changes through hypoxia in humans and in yeast as a comparable cell model. Sleep Breath 14:221–225

    Article  PubMed  Google Scholar 

  • Nunn JF (1998) Evolution of the atmosphere. Proc Geol Assoc 109:1–13

    Article  CAS  PubMed  Google Scholar 

  • Owerkowicz T, Elsey RM, Hicks JW (2009) Atmospheric oxygen level affects growth trajectory, cardiopulmonary allometry and metabolic rate in the American alligator (Alligator mississippiensis). J Exp Biol 212:1237–1247

    Article  PubMed Central  PubMed  Google Scholar 

  • Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P, Rainbird RH et al (2014) Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346:635–638

    Article  CAS  PubMed  Google Scholar 

  • Pollock JP, Patel HM, Randolph BJ, Heffernan MJ, Leuenberger UA, Muller MD (2014) Ascorbic acid does not enhance hypoxia-induced vasodilation in healthy older men. Physiol Rep 2(7):e12091

    Article  PubMed Central  PubMed  Google Scholar 

  • Poulios E, Trougakos IP, Chondrogianni N, Gonos ES (2007) Exposure of human diploid fibroblasts to hypoxia extends proliferative life span. Ann N Y Acad Sci 1119:9–19

    Article  CAS  PubMed  Google Scholar 

  • Raguso CA, Luthy C (2011) Nutritional status in chronic obstructive pulmonary disease: role of hypoxia. Nutrition 27:138–143

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW (1994) Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proc Natl Acad Sci U S A 1991:6735–6742

    Article  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76

    Article  CAS  PubMed  Google Scholar 

  • Sessions AL, Doughty DM, Welander PV, Summons RE, Newman DK (2009) The continuing puzzle of the great oxidation event. Curr Biol 19:R567–R574

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Shukla Y (2009) The evolution and distribution of life in the Precambrian eon-global perspective and the Indian record. J Biosci 34:765–776

    Article  CAS  PubMed  Google Scholar 

  • Strehler B (1962) The distribution of cellular aging. Time, cells, and aging. Academic Press, New York, pp 33–85

    Google Scholar 

  • Taylor CT, McElwain JC (2010) Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology (Bethesda) 25:272–279

    Article  CAS  Google Scholar 

  • Tyler SA, Barghoorn ES (1954) The occurrence of structurally preserved plants in Precambrian rocks of the Canadian Shield. Science 119:606–608

    Article  CAS  PubMed  Google Scholar 

  • Walker JC (1985) Carbon dioxide on the early earth. Orig Life Evol Bioph 16:117–127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Prof. Vadim Fraifeld for his valuable suggestions and contribution in collecting the mammalian data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khatchik Muradian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muradian, K. (2015). Atmosphere, Metabolism and Longevity. In: Vaiserman, A., Moskalev, A., Pasyukova, E. (eds) Life Extension. Healthy Ageing and Longevity, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-18326-8_13

Download citation

Publish with us

Policies and ethics