Skip to main content

Computational Intelligence and Optimization for Transportation Big Data: Challenges and Opportunities

  • Chapter
  • First Online:

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 38))

Abstract

With the overwhelming amount of transportation data being gathered worldwide, Intelligent Transportation Systems (ITS) are faced with several modeling challenges. New modeling paradigms based on Computational Intelligence (CI) that take advantage of the advent of big datasets have been systematically proposed in literature. Transportation optimization problems form a research field that has systematically benefited from CI. Nevertheless, when it comes to big data applications, research is still at an early stage. This work attempts to review the unique opportunities provided by ITS and big data and discuss the emerging approaches for transportation modeling. The literature dedicated to big data transportation applications related to CI and optimization is reviewed. Finally, the challenges and emerging opportunities for researchers working with such approaches are also acknowledged and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aldrich J (1995) Correlations genuine and spurious in Pearson and Yule. Stat Sci 10:364–376

    Google Scholar 

  2. Arango C, Cortés P, Onieva L, Escudero A (2013) Simulation-optimization models for the dynamic berth allocation problem. Comput Aided Civil Infrastruct Eng 28(10):769–779

    Google Scholar 

  3. Astarita V, Bertini L, d’Elia S, Guido G (2006) Motorway traffic parameter estimation from mobile phone counts. Eur J Oper Res 175:1435–1446

    Article  MATH  Google Scholar 

  4. Atzori L, Iera A, Morabito F (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805

    Article  MATH  Google Scholar 

  5. Aupetit S, Riff J, Buttelli O, Espié S (2013) Naturalistic study of rider’s behaviour in initial training in France: evidence of limitations in the educational content. Accid Anal Prev 58:206–217

    Article  Google Scholar 

  6. Ayuso M, Guillén M, Pérez-Marín AM (2014) Time and distance to first accident and driving patterns of young drivers with pay-as-you-drive insurance. Accid Anal Prev 73:125–131

    Article  Google Scholar 

  7. Bai Q, Ahmed A, Li Z, Labi S (2014) A hybrid pareto frontier generation method for trade-off analysis in transportation asset management. Comput Aided Civil Infrastruct Eng

    Google Scholar 

  8. Balseiro SR, Loiseau I, Ramonet J (2011) An ant colony algorithm hybridized with insertion heuristics for the time dependent vehicle routing problem with time windows. Comput Oper Res 38(6):954–966

    Article  MATH  MathSciNet  Google Scholar 

  9. Bar-Gera H (2007) Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study from Israel. Transp Res Part C 15:380–391

    Article  Google Scholar 

  10. Basyoni Y, Talaat H (2014) A bi-level traffic data extraction procedure via cellular phone network for inter-city travel. J Intell Transp Syst Technol Plann Oper (forthcoming)

    Google Scholar 

  11. Bazzan AL (2009) Opportunities for multiagent systems and multiagent reinforcement learning in traffic control. Auton Agent Multi-Agent Syst 18(3):342–375

    Article  Google Scholar 

  12. Bazzan AL, Klügl F (2014) A review on agent-based technology for traffic and transportation. Knowl Eng Rev 29(03):375–403

    Article  Google Scholar 

  13. Bierlaire M, Chen J, Newman J (2013) A probabilistic map matching method for smartphone GPS data. Transp Res Part C: Emerg Technol 26:78–98

    Article  Google Scholar 

  14. Boyd D, Crawford K (2012) Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon. Inf Commun Soc 15(5):662–679

    Article  Google Scholar 

  15. Breiman L (2001) Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat Sci 16(3):199–231

    Article  MATH  MathSciNet  Google Scholar 

  16. Caceres N, Wideberg JP, Benitez FG (2007) Deriving origin-destination data from a mobile phone network. Intell Transp Syst 1(1):15–26

    Article  Google Scholar 

  17. Cai H, Jia X, Chiu AS, Hu X, Xu M (2014) Siting public electric vehicle charging stations in Beijing using big-data informed travel patterns of the taxi fleet. Transp Res Part D: Transp Environ 33:39–46

    Article  Google Scholar 

  18. Caragliu A, Del Bo C, Nijkamp P (2009) Smart cities in Europe. Serie Research Memoranda 0048 (VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics)

    Google Scholar 

  19. Castro PS, Zhang D, Li S (2012) Urban traffic modelling and prediction using large scale taxi GPS traces. In: Pervasive computing. Springer, Berlin, Heidelberg, pp 57–72

    Google Scholar 

  20. Ceylan H, Ceylan H (2012) A hybrid harmony search and TRANSYT hill climbing algorithm for signalized stochastic equilibrium transportation networks. Transp Res Part C: Emerg Technol 25:152–167

    Article  Google Scholar 

  21. Ceylan H (2006) Developing combined genetic algorithm hill-climbing optimization method for area traffic control. J Transp Eng ASCE 132(8):663–671

    Article  Google Scholar 

  22. Ceylan H, Bell MGH (2004) Traffic signal timing optimization based on genetic algorithm approach, including drivers’ routing. Transp Res Part B 38(4):329–342

    Article  Google Scholar 

  23. Chan KY, Dillon T, Chang E, Singh J (2013) Prediction of short-term traffic variables using intelligent swarm-based neural networks. IEEE Trans Control Syst Technol 21(1):263–274

    Article  Google Scholar 

  24. Chen B, Cheng HH (2010) A review of the applications of agent technology in traffic and transportation systems. IEEE Trans Intell Transp Syst 11(2):485–497

    Article  Google Scholar 

  25. Chen C, Zhang D, Guo B, Ma X, Pan G, Wu Z (forthcoming) TripPlanner: personalized trip planning leveraging heterogeneous crowdsourced digital footprints. IEEE Trans Intell Transp Syst

    Google Scholar 

  26. Chen C, Zhang D, Li N, Zhou ZH (2014) B-Planner: planning bidirectional night bus routes using large-scale taxi GPS traces. IEEE Trans Intell Transp Syst 15(4):1451–1465

    Article  Google Scholar 

  27. Cheng Z, Caverlee J, Lee K (2010) You are where you tweet: a content-based approach to geo-locating twitter users. In: Proceedings of the 19th ACM international conference on Information and knowledge management. ACM, Toronto, ON, Canada

    Google Scholar 

  28. Cheng Z, Caverlee J, Lee K, Sui D (2011) Exploring millions of footprints in location sharing services. In: Proceedings of the fifth international conference on weblogs and social media. AAAI, Barcelona, Spain

    Google Scholar 

  29. Cheng S, Shi Y, Qin Q, Bai R (2013) Swarm intelligence in big data analytics. In: Intelligent data engineering and automated learning-IDEAL 2013. Springer, Berlin, Heidelberg, pp 417–426

    Google Scholar 

  30. Chevrier R, Pellegrini P, Rodriguez J (2013) Energy saving in railway timetabling: a bi-objective evolutionary approach for computing alternative running times. Transp Res Part C: Emerg Technol 37:20–41

    Article  Google Scholar 

  31. Chira C, Sedano J, Villar JR, Cámara M, Corchado E (2014) Urban bicycles renting systems: modelling and optimization using nature-inspired search methods. Neurocomputing 135:98–106

    Article  Google Scholar 

  32. Chowdhury M, Sadek AW (2012) Advantages and limitations of artificial intelligence. Artif Intell Appl Crit Transp Issues 6

    Google Scholar 

  33. Collins C, Hasan S, Ukkusuri SV (2013) A novel transit rider satisfaction metric. J Public Transp 16(2):21–45

    Article  Google Scholar 

  34. Cong Z, De Schutter B, Babuška R (2013) Ant colony routing algorithm for freeway networks. Transp Res Part C: Emerg Technol 37:1–19

    Article  Google Scholar 

  35. D’Acierno L, Gallo M, Montella B (2012) An ant colony optimisation algorithm for solving the asymmetric traffic assignment problem. Eur J Oper Res 217(2):459–469

    Article  MATH  MathSciNet  Google Scholar 

  36. Danalet A, Farooq B, Bierlaire M (2014) A Bayesian approach to detect pedestrian destination-sequences from WiFi signatures. Transp Res Part C: Emerg Technol 44:146–170

    Article  Google Scholar 

  37. Doolan R, Muntean GM (2014) Time-ants: an innovative temporal and spatial ant-based vehicular routing mechanism. In: Intelligent vehicles symposium proceedings, 2014 IEEE. IEEE, pp 951–956

    Google Scholar 

  38. Fagnant DJ, Kockelman KM (2014) The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transp Res Part C: Emerg Technol 40:1–13

    Article  Google Scholar 

  39. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17(3):37

    Google Scholar 

  40. Forcael E, González V, Orozco F, Vargas S, Pantoja A, Moscoso P (2014) Ant colony optimization model for tsunamis evacuation routes. Comput Aided Civil Infrastruct Eng 29(10):723–737

    Article  Google Scholar 

  41. Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide. Wiley, Chichester

    Google Scholar 

  42. Friedrich M, Immisch K, Jehlicka P, Otterstatter T, Schlaich J (2010) Generating origin-destination matrices from mobile phone trajectories. Transp Res Rec 2196:93–101

    Article  Google Scholar 

  43. Galland S, Knapen L, Yasar AUH, Gaud N, Janssens D, Lamotte O, Wets G (2014) Multi-agent simulation of individual mobility behavior in carpooling. Transp Res Part C: Emerg Technol

    Google Scholar 

  44. Geroliminis N, Kepaptsoglou K, Karlaftis MG (2011) A hybrid hypercube-genetic algorithm approach for deploying many emergency response mobile units in an urban network. Eur J Oper Res 210(2):287–300

    Article  MATH  MathSciNet  Google Scholar 

  45. Glymour C, Madigan D, Pregibon D, Smyth P (1997) Statistical themes and lessons for data mining. Data Min Knowl Discov 1(1):11–28

    Article  Google Scholar 

  46. Goksal FP, Karaoglan I, Altiparmak F (2013) A hybrid discrete particle swarm optimization for vehicle routing problem with simultaneous pickup and delivery. Comput Ind Eng 65(1):39–53

    Article  Google Scholar 

  47. Guido G, Gallelli V, Saccomanno F, Vitale A, Rogano D, Festa D (2014) Treating uncertainty in the estimation of speed from smartphone traffic probes. Transp Res Part C: Emerg Technol 47:100–112

    Article  Google Scholar 

  48. Hand DJ (2000) Data mining. New challenges for statisticians. Soc Sci Comput Rev 18(4):442–449

    Article  Google Scholar 

  49. Hasan S, Ukkusuri SV (2014) Urban activity pattern classification using topic models from online geo-location data. Transp Res Part C: Emerg Technol 44:363–381

    Article  Google Scholar 

  50. Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Khan SU (2015) The rise of “big data” on cloud computing: review and open research issues. Inf Syst 47:98–115

    Article  Google Scholar 

  51. Herrera JC, Work DB, Herring R, Ban X, Jacobson Q, Bayen A (2010) Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment. Transp Res Part C 18:568–583

    Article  Google Scholar 

  52. Hong WC (2012) Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting. Neural Comput Appl 21(3):583–593

    Article  Google Scholar 

  53. Hood J, Sall E, Charlton B (2011) A GPS-based bicycle route choice model for San Francisco. California. Transp Lett 3(1):63–75

    Article  Google Scholar 

  54. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  55. Jha MK, Schonfeld P (2004) A highway alignment optimization model using geographic information systems. Transp Res Part A: Policy Pract 38(6):455–481

    Google Scholar 

  56. Jia L, Feng X, Zou G (2013) Solving multiobjective bilevel transportation-distribution planning problem by modified NSGA II. In: 2013 9th international conference on computational intelligence and security (CIS). IEEE, pp 303–307

    Google Scholar 

  57. Jin Y, Tang K, Yu X, Sendhoff B, Yao X (2013) A framework for finding robust optimal solutions over time. Memetic Comput 5(1):3–18

    Article  Google Scholar 

  58. Jin Y, Sendhoff B (2009) A systems approach to evolutionary multiobjective structural optimization and beyond. IEEE Comput Intell Mag 4(3):62–76

    Article  Google Scholar 

  59. Kallioras NA, Lagaros ND, Karlaftis MG (2013) An improved harmony search algorithm for emergency inspection scheduling. Eng Optim (ahead-of-print) 1–23

    Google Scholar 

  60. Kammoun HM, Kallel I, Casillas J, Abraham A, Alimi AM (2014) Adapt-Traf: an adaptive multiagent road traffic management system based on hybrid ant-hierarchical fuzzy model. Transp Res Part C: Emerg Technol 42:147–167

    Article  Google Scholar 

  61. Kang C, Ma X, Tong D, Liu Y (2012) Intra-urban human mobility patterns: an urban morphology perspective. Phys A: Stat Mech Appl 391(4):1702–1717

    Article  Google Scholar 

  62. Kang MW, Jha MK, Schonfeld P (2012) Applicability of highway alignment optimization models. Transp Res Part C: Emerg Technol 21(1):257–286

    Article  Google Scholar 

  63. Kang MW, Schonfeld P, Yang N (2009) Prescreening and repairing in a genetic algorithm for highway alignment optimization. Comput Aided Civil Infrastruct Eng 24(2):109–119

    Article  Google Scholar 

  64. Karlaftis MG, Vlahogianni EI (2009) Memory properties and fractional integration in transportation time-series. Transp Res Part C: Emerg Technol 17(4):444–453

    Article  Google Scholar 

  65. Karlaftis MG, Kepaptsoglou K, Sambracos E (2009) Containership routing with time deadlines and simultaneous deliveries and pick-ups. Transp Res Part E: Logist Transp Rev 45(1):210–221

    Article  Google Scholar 

  66. Karlaftis MG, Vlahogianni EI (2011) Statistics versus neural networks in transportation research: differences, similarities and some insights. Transp Res Part C: Emerg Technol 19(3):387–399

    Article  Google Scholar 

  67. Kepaptsoglou K, Karlaftis MG (2009) The bus bridging problem in metro operations: conceptual framework, models and algorithms. Public Transp 1(4):275–297

    Article  Google Scholar 

  68. Kepaptsoglou K, Karlaftis MG, Li Z (2010) Optimizing pricing policies in Park-and-Ride facilities: a model and decision support system with application. J Transp Syst Eng Inf Technol 10(5):53–65

    Google Scholar 

  69. Kontou E, Kepaptsoglou K, Charalampakis AE, Karlaftis MG (2014) The bus to depot allocation problem revisited: a genetic algorithm. Public Transp 6(3):237–255

    Article  Google Scholar 

  70. Lagaros ND, Kepaptsoglou K, Karlaftis MG (2012) Fund allocation for civil infrastructure security upgrade. J Manage Eng 29(2):172–182

    Article  Google Scholar 

  71. Laney D (2001) 3D data management: controlling data volume, velocity and variety. Gartner. Accessed 6 Feb

    Google Scholar 

  72. Lau HC, Chan TM, Tsui WT, Chan FT, Ho GT, Choy KL (2009) A fuzzy guided multi-objective evolutionary algorithm model for solving transportation problem. Expert Syst Appl 36(4):8255–8268

    Article  Google Scholar 

  73. Levin R, Kanza Y (2014) TARS: traffic-aware route search. GeoInformatica 18(3):461–500

    Article  Google Scholar 

  74. Liang X, Zheng X, Lv W, Zhu T, Xu K (2012) The scaling of human mobility by taxis is exponential. Phys A: Stat Mech Appl 391(5):2135–2144

    Article  Google Scholar 

  75. Lin DY, Ku YH (2014) Using genetic algorithms to optimize stopping patterns for passenger rail transportation. Comput Aided Civil Infrastruct Eng 29(4):264–278

    Article  Google Scholar 

  76. Liu Y, Kang C, Gao S, Xiao Y, Tian Y (2012) Understanding intra-urban trip patterns from taxi trajectory data. J Geogr Syst 14(4):463–483

    Article  Google Scholar 

  77. Liu Y, Li P, Wehner K, Yu J (2013) A generalized integrated corridor diversion control model for freeway incident management. Comput Aided Civil Infrastruct Eng 28(8):604–620

    Article  Google Scholar 

  78. Liu Y, Roshandeh AM, Li Z, Kepaptsoglou K, Patel H, Lu X (2014) Heuristic approach for optimizing emergency medical services in road safety within large urban networks. J Transp Eng 140(9):04014043

    Article  Google Scholar 

  79. Liu Y, Wang F, Xiao Y, Gao S (2012) Urban land uses and traffic ‘source-sink areas’: evidence from GPS-enabled taxi data in Shanghai. Landscape Urban Plann 106(1):73–87

    Article  Google Scholar 

  80. Lv Y, Duan Y, Kang W, Li Z, Wang FY (2014) Traffic flow prediction with big data: a deep learning approach. IEEE Trans Intell Transp Syst (forthcoming)

    Google Scholar 

  81. Meng Q, Khoo HL (2010) A Pareto-optimization approach for a fair ramp metering. Transp Res Part C: Emerg Technol 18(4):489–506

    Article  Google Scholar 

  82. Mesbah M, Sarvi M, Currie G (2011) Optimization of transit priority in the transportation network using a genetic algorithm. IEEE Trans Intell Transp Syst 12(3):908–919

    Article  Google Scholar 

  83. Musicant O, Bar-Gera H, Schechtman E (2010) Electronic records of undesirable driving events. Transp Res Part F: Traffic Psychol Behav 13(2):71–79

    Article  Google Scholar 

  84. Musicant O, Bar-Gera H, Schechtman E (2014) Temporal perspective on individual driver behavior using electronic records of undesirable events. Accid Anal Prev 70:55–64

    Article  Google Scholar 

  85. Paefgen J, Staake T, Fleisch E (2014) Multivariate exposure modeling of accident risk: insights from Pay-as-you-drive insurance data. Transp Res Part A: Policy Pract 61:27–40

    Google Scholar 

  86. Paefgen J, Staake T, Thiesse F (2013) Evaluation and aggregation of pay-as-you-drive insurance rate factors: a classification analysis approach. Decis Support Syst 56:192–201

    Article  Google Scholar 

  87. Pahlavani P, Delavar MR (2014) Multi-criteria route planning based on a driver’s preferences in multi-criteria route selection. Transp Res Part C: Emerg Technol 40:14–35

    Article  Google Scholar 

  88. Pan CX, Lu JG, Di S, Ran B (2006) Cellular-based data-extracting method for trip distribution. Traffic Urban Data 1945:33–39

    Google Scholar 

  89. Papinski D, Scott DM, Doherty ST (2009) Exploring the route choice decision-making process: a comparison of planned and observed routes obtained using person-based GPS. Transp Res Part F: Traffic Psychol Behav 12(4):347–358

    Article  Google Scholar 

  90. Pishvaee MS, Farahani RZ, Dullaert W (2010) A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Comput Oper Res 37(6):1100–1112

    Article  MATH  Google Scholar 

  91. Putha R, Quadrifoglio L, Zechman E (2012) Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions. Computer Aided Civil Infrastruct Eng 27(1):14–28

    Article  Google Scholar 

  92. Sadek AW (ed) (2007) Artificial intelligence in transportation: information for application. Transportation Research Board Circular (E-C113), TRB, National Research Council, Washington, DC. http://onlinepubs.trb.org/onlinepubs/circulars/ec113.pdf

  93. Sarle WS (1994) Neural networks and statistical models. In: Proceedings of the nineteenth annual SAS users group international conference, 1–13 April

    Google Scholar 

  94. Shafahi Y, Bagherian M (2013) A customized particle swarm method to solve highway alignment optimization problem. Computer Aided Civil Infrastruct Eng 28(1):52–67

    Article  Google Scholar 

  95. Shichrur R, Sarid A, Ratzon NZ (2014) Determining the sampling time frame for in-vehicle data recorder measurement in assessing drivers. Transp Res Part C: Emerg Technol 42:99–106

    Article  Google Scholar 

  96. Shimamoto H, Murayama N, Fujiwara A, Zhang J (2010) Evaluation of an existing bus network using a transit network optimisation model: a case study of the Hiroshima city bus network. Transportation 37(5):801–823

    Article  Google Scholar 

  97. Shuldiner AT, Shuldiner PW (2013) The measure of all things: reflections on changing conceptions of the individual in travel demand modeling. Transportation 40(6):1117–1131

    Article  Google Scholar 

  98. Stolfi DH, Alba E (2014) Red swarm: reducing travel times in smart cities by using bio-inspired algorithms. Appl Soft Comput 24:181–195

    Article  Google Scholar 

  99. Sun D, Benekohal RF, Waller ST (2006) Bi-level programming formulation and heuristic solution approach for dynamic traffic signal optimization. Comput Aided Civil Infrastruct Eng 21(5):321–333

    Article  Google Scholar 

  100. Takeda K, Miyajima C, Suzuki T, Angkititrakul P, Kurumida K, Kuroyanagi Y, Komada Y (2012) Self-coaching system based on recorded driving data: learning from one’s experiences. IEEE Trans Intell Transp Syst 13(4):1821–1831

    Article  Google Scholar 

  101. Teklu F, Sumalee A, Watling D (2007) A genetic algorithm approach for optimizing traffic control signals considering routing. Comput Aided Civil Infrastruct Eng 22(1):31–43

    Article  Google Scholar 

  102. Teodorović D (2008) Swarm intelligence systems for transportation engineering: principles and applications. Transp Res Part C: Emerg Technol 16(6):651–667

    Article  Google Scholar 

  103. Terzi S, Serin S (2014) Planning maintenance works on pavements through ant colony optimization. Neural Comput Appl 25:1–11

    Google Scholar 

  104. Toledo T, Musicant O, Lotan T (2008) In-vehicle data recorders for monitoring and feedback on drivers’ behavior. Transp Res Part C: Emerg Technol 16(3):320–331

    Article  Google Scholar 

  105. Tselentis DI, Vlahogianni EI, Karlaftis MG (2014) Improving short-term traffic forecasts: to combine models or not to combine? IET Intell Transp Syst (forthcoming)

    Google Scholar 

  106. Vlacheas P, Giaffreda R, Stavroulaki V, Kelaidonis D, Foteinos V, Poulios G, Demestichas P, Somov A, Biswas AR, Moessner K (2013) Enabling smart cities through a cognitive management framework for the internet of things. IEEE Commun Mag 51(6):102–111

    Article  Google Scholar 

  107. Vlahogianni EI, Karlaftis MG (2012) Comparing freeway lane speed patterns under fine and adverse weather conditions. Nonlinear Dyn 69(4):1949–1963

    Article  Google Scholar 

  108. Vlahogianni EI (2009) Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics. J Intell Transp Syst: Technol Plann Oper 13(2):73–84

    Article  Google Scholar 

  109. Vlahogianni EI, Karlaftis MG (2011) Aggregating temporal and spatial data: implication for statistical characteristics and model choice. Transp Lett: Int J Transp Res 3(1):37–49

    Article  Google Scholar 

  110. Vlahogianni EI, Karlaftis MG (2013) Testing and comparing neural network and statistical approaches for predicting transportation time series. Transp Res Rec: J Transp Res Board 2399(1):9–22

    Article  Google Scholar 

  111. Vlahogianni EI, Golias JC, Karlaftis MG (2004) Short-term traffic forecasting: overview of objectives and methods. Transp Rev 24(5):533–557

    Article  Google Scholar 

  112. Vlahogianni EI, Karlaftis MG, Golias JC (2005) Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp Res Part C: Emerg Technol 13(3):211–234

    Article  Google Scholar 

  113. Vlahogianni EI, Karlaftis MG, Golias JC (2006) Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume. Transp Res Part C: Emerg Technol 14(5):351–367

    Article  Google Scholar 

  114. Vlahogianni EI, Karlaftis MG, Golias JC (2008) Temporal evolution of short-term urban traffic flow: a nonlinear dynamics approach. Comput Aided Civil Infrastruct Eng 23(7):536–548

    Article  Google Scholar 

  115. Vlahogianni EI, Karlaftis MG, Golias JC (2014) Short-term traffic forecasting: where we are and where we’re going. Transp Res Part C: Emerg Technol 43:3–19

    Google Scholar 

  116. Vlahogianni EI, Karlaftis MG, Orfanou FP (2012) Modeling the effects of weather and traffic on the risk of secondary incidents. J Intell Transp Syst 16(3):109–117

    Article  Google Scholar 

  117. Vlahogianni EI, Karlaftis MG, Golias JC, Kourbelis ND (2006) Pattern-based short-term urban traffic predictor. In: Intelligent transportation systems conference, 2006, ITSC’06. IEEE, pp 389–393

    Google Scholar 

  118. Vlahogianni EI, Yannis G, Golias JC (2013) Critical power two wheeler riding patterns at the emergence of an incident. Accid Anal Prev 58:340–345

    Article  Google Scholar 

  119. Vlahogianni EI, Yannis G, Golias JC (2014) Detecting powered-two-wheeler incidents from high resolution naturalistic data. Transp Res Part F: Traffic Psychol Behav 22:86–95

    Article  Google Scholar 

  120. Wang FY (2010) Parallel control and management for intelligent transportation systems: concepts, architectures, and applications. IEEE Trans Intell Transp Syst 11(3):630–638

    Article  Google Scholar 

  121. Wang H, Li M, Bu Y, Li J, Gao H, Zhang J (2014) Cleanix: a big data cleaning parfait. In: Proceedings of the 23rd ACM international conference on conference on information and knowledge management. ACM, pp 2024–2026

    Google Scholar 

  122. Yang F, Jin PJ, Cheng Y, Ran B (2014) Origin-destination estimation for non-commuting trips using location-based social networking data. Int J Sustain Transp (just-accepted)

    Google Scholar 

  123. Yang N, Kang MW, Schonfeld P, Jha MK (2014) Multi-objective highway alignment optimization incorporating preference information. Transp Res Part C: Emerg Technol 40:36–48

    Article  Google Scholar 

  124. Yin W, Murray-Tuite P, Ukkusuri SV, Gladwin H (2014) An agent-based modeling system for travel demand simulation for hurricane evacuation. Transp Res Part C: Emerg Technol 42:44–59

    Article  Google Scholar 

  125. Zhang G, Zhang H, Li L, Dai C (2014) Agent-based simulation and optimization of urban transit system. IEEE Trans Intell Transp Syst 15(2)

    Google Scholar 

  126. Zhang L, Wu C, Li Z, Guo C, Chen M, Lau F (2013) Moving big data to the cloud: an online cost-minimizing approach. IEEE J Sel Areas Commun 31(12):2710–2721

    Article  Google Scholar 

  127. Zhang S, Lee CKM, Chan HK, Choy KL, Wu Z (2015) Swarm intelligence applied in green logistics: a literature review. Eng Appl Artif Intell 37:154–169

    Article  Google Scholar 

  128. Zhou Z, Chawla N, Jin Y, Williams G (2014) Big data opportunities and challenges: discussions from data analytics perspectives. IEEE Comput Intell Mag 9(4):62–74

    Article  Google Scholar 

Download references

Acknowledgments

This work is part of research co-financed by the European Union (European Social Fund—ESF) and the Hellenic National Funds, through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program “Aristeia I”. This paper is dedicated to the memory of my mentor and friend, Professor Matthew G. Karlaftis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni I. Vlahogianni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vlahogianni, E.I. (2015). Computational Intelligence and Optimization for Transportation Big Data: Challenges and Opportunities. In: Lagaros, N., Papadrakakis, M. (eds) Engineering and Applied Sciences Optimization. Computational Methods in Applied Sciences, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-18320-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18320-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18319-0

  • Online ISBN: 978-3-319-18320-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics