Skip to main content

Simulation Optimization of Car-Following Models Using Flexible Techniques

  • Chapter
  • First Online:
Engineering and Applied Sciences Optimization

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 38))

Abstract

Car-following behavior is a key component of microscopic traffic simulation. Numerous models based on traffic flow theory have been developed for decades in order to represent the longitudinal interactions between vehicles as realistically as possible. Nowadays, there is a shift from conventional models to data-driven approaches. Data-driven methods are more flexible and allow the incorporation of additional information to the estimation of car-following models. On the other hand, conventional car-following models are founded on traffic flow theory, thus providing better insight into traffic behavior. The integration of data-driven methods in applications of intelligent transportation systems is an attractive perspective. Towards this direction, in this research an existing data-driven approach is further validated using another training dataset. Then, the methodology is enriched and an improved methodological framework is suggested for the optimization of car-following models. Machine learning techniques, such as classification, locally weighted regression (loess) and clustering, are innovatively integrated. In this chapter, validation of the proposed methods is demonstrated on data from two sources: (i) data collected from a sequence of instrumented vehicles in Naples, Italy, and (ii) data from the NGSIM project. In addition, a conventional car-following model, the Gipps’ model, is used as reference in order to monitor and evaluate the effectiveness of the proposed method. Based on the encouraging results, it is suggested that machine learning methods should be further investigated as they could ensure reliability and improvement in data driven estimation of car-following models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed KI (1999) Modeling drivers’ acceleration and lane changing behavior. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Mass

    Google Scholar 

  2. Al-Shihabi T, Mourant RR (2003) Toward more realistic driving behavior models for autonomous vehicles in driving simulators. In: 82nd annual meeting of the transportation research board, Washington, DC

    Google Scholar 

  3. Antoniou C, Balakrishna R, Koutsopoulos HN (2011) A synthesis of emerging data collection technologies and their impact on traffic management applications. Eur Trans Res Rev 3(3):139–148. doi:10.1007/s12544-011-0058-1

    Article  Google Scholar 

  4. Antoniou C, Koutsopoulos HN (2006) Estimation of traffic dynamics models with machine learning methods. Transp Res Rec: J Transp Res Board 1965:103–111 (Washington, DC)

    Google Scholar 

  5. Antoniou C, Koutsopoulos HN, Yannis G (2013) Dynamic data-driven local traffic state estimation and prediction. Transp Res C: Emerg Technol 34:89–107

    Article  Google Scholar 

  6. Aw A, Klar A, Rascle M, Materne T (2002) Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J Appl Math 63(1):259–278

    Article  MATH  MathSciNet  Google Scholar 

  7. Aycin MF, Benekohal RF (1999) Comparison of car-following models for simulation. Transp Res Rec: J Transp Res Board 1678(1):116–127

    Article  Google Scholar 

  8. Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y (1995) Dynamical model of traffic congestion and numerical simulation. Phys Rev E 51(2):1035–1042

    Article  Google Scholar 

  9. Bando M, Hasebe K, Nakanishi K, Nakayama A (1998) Analysis of optimal velocity model with explicit delay. Phys Rev E 58(5):5429–5435

    Article  Google Scholar 

  10. Banfield JD, Raftery AE (1993) Model-based gaussian and non gaussian clustering. Biometrics 49:803–821

    Article  MATH  MathSciNet  Google Scholar 

  11. Bellemans T, De Schutter B, De Moor B (2002) Models for traffic control. J A 43(3–4)13–22

    Google Scholar 

  12. Bevrani K, Chung E (2011) Car following model improvement for traffic safety metrics reproduction. In: Proceedings of the Australasian transport research forum 2011. PATREC, Adelaide Hilton Hotel, Adelaide, SA, pp 1–14

    Google Scholar 

  13. Bierley RL (1963) Investigation of an inter vehicle spacing display. Highw Res Rec 25:58–75

    Google Scholar 

  14. Bifulco GN, Pariota L, Simonelli F, Di Pace R (2013) Development and testing of a fully adaptive cruise control system. Transp Res C 29(2013):156–170

    Article  Google Scholar 

  15. Boxill SA, Yu L (2000) An evaluation of traffic simulation models for supporting ITS development. Center for Transportation Training and Research, Texas Southern University

    Google Scholar 

  16. Brackstone M, McDonald M (1999) Car-following: a historical review. Transp Res F 2(4):181–196

    Article  Google Scholar 

  17. Chandler RE, Herman R, Montroll EW (1958) Traffic dynamics: studies in car following. Oper Res 6(2):165–184

    Article  MathSciNet  Google Scholar 

  18. Ciuffo B, Punzo V, Montanino M (2012) 30 years of the gipps’ car-following model: applications, developments and new features. TRB 2012 Ann Meet, Paper number: 12–3350

    Google Scholar 

  19. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74(1978):829–836

    Article  MATH  MathSciNet  Google Scholar 

  20. Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(1988):596–610

    Article  MATH  Google Scholar 

  21. Cleveland WS, Devlin SJ, Grosse E (1988) Regression by local fitting: methods, properties and computational algorithms. J Econometrics 37(1988):87–114

    Article  MathSciNet  Google Scholar 

  22. Cohen RA (1999) An Introduction to PROC LOESS for local regression. In: Proceedings of the 24th SAS users group international conference, Paper 273

    Google Scholar 

  23. Colombaroni C, Fusco G (2013) Artificial neural network models for car following: experimental analysis and calibration issues. J Int Transp Syst 18(1) (2014)

    Google Scholar 

  24. Davis LC (2003) Modifications of the optimal velocity traffic model to include delay due to driver reaction time. Phys A: Stat Mech Appl 319:557–567

    Article  MATH  Google Scholar 

  25. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the E-M algorithm (with discussion). J R Stat Soc Ser B 39:1–38

    MATH  MathSciNet  Google Scholar 

  26. Dunne S, Ghosh B (2012) Regime-based short-term multivariate traffic condition forecasting algorithm. J Transp Eng 138(4):455–466

    Article  Google Scholar 

  27. Edie LC (1961) Car-following and steady-state theory for non-congested traffic. Oper Res 9(1):66–76. doi:10.2307/167431

    Article  MATH  MathSciNet  Google Scholar 

  28. Einbeck J, Tutz G (2004) Modelling beyond regression functions: an application of multimodal regression to speed-flow data. SFB Discussion Paper 395

    Google Scholar 

  29. Fraley C (1998) Algorithms for model-based gaussian hierarchical clustering. SIAM J Sci Comput 20:270–281

    Article  MATH  MathSciNet  Google Scholar 

  30. Fraley C, Raftery AE (2002) Model-based clustering. Discriminant analysis and density estimation. J Am Stat Assoc 97(458):611–631

    Article  MATH  MathSciNet  Google Scholar 

  31. Fraley C, Raftery AE (2003) Enhanced software for model-based clustering, density estimation, and discriminant analysis: MCLUST. J Class 20(263–286):2003

    MathSciNet  Google Scholar 

  32. Fritzsche HT (1994) A model for traffic simulation. Traffic Eng Control 5:317–321

    Google Scholar 

  33. Gazis DC, Herman R, Rothery RW (1961) Nonlinear follow-the-leader models of traffic flow. Oper Res 9(4):545–567. http://www.jstor.org/stable/167126

  34. Gipps PG (1981) A behavioral car-following model for computer simulation. Transp Res B 15:105–111

    Google Scholar 

  35. Greenberg H (1959) An analysis of traffic flow. Oper Res 7:79–85

    Article  Google Scholar 

  36. Hamdar SH, Mahmassani HS (2008) Driver car-following behavior: from discrete event process to continuous set of episodes. In: Proceedings of the 87th annual meeting of the transportation research board (CD, Paper No. 08-3134), January, Washington, DC

    Google Scholar 

  37. Hartigan JA (1975) Clustering algorithms. Wiley, New York

    MATH  Google Scholar 

  38. Hartigan JA, Wong MA (1979) A K-means clustering algorithm. Appl Stat 28:100–108

    Article  MATH  Google Scholar 

  39. Helbing D, Tilch B (1998) Generalized force model of traffic dynamics. Phys Rev E 58(1):133–138

    Google Scholar 

  40. Herman R, Montroll EW, Potts RB, Rothery RW (1959) Traffic dynamics: analysis of stability in car following. Oper Res 7(1):86–106

    Article  MathSciNet  Google Scholar 

  41. Huang E, Antoniou C, Wen Y, Ben-Akiva M, Lopes J, Bento J (2009) Real-time multi-sensor multi-source network data fusion using dynamic traffic assignment models. In: 12th international IEEE conference on intelligent transportation systems, ITSC’09, 2009. IEEE, pp 1–6

    Google Scholar 

  42. Jiang R, Wu Q, Zhu Z (2001) Full velocity difference model for a car-following theory. Phys Rev E 64(1):017101

    Google Scholar 

  43. Kikuchi C, Chakroborty P (1992) Car following model based on a fuzzy inference system. Transp Res Rec 1365:82–91

    Google Scholar 

  44. Kometani E, Sasaki T (1958) On the stability of traffic flow. Report no. 1. J Oper Res Jpn 2(1):11–26

    Google Scholar 

  45. Koutsopoulos NH, Farah H (2012) Latent class model for car following behavior. Transp Res B 46(2012):563–578

    Article  Google Scholar 

  46. Lenz H, Wagner CK, Sollacher R (1999) Multi-anticipative car-following model. Eur Phys J B 7(2):331–335

    Article  Google Scholar 

  47. Leutzbach W (1988) Introduction theory traffic flow. Springer, Berlin

    Book  Google Scholar 

  48. Liu R, Li X (2013) Stability analysis of a multi-phase car-following model. Phys A: Stat Mech Appl 392(11):2660–2671

    Article  Google Scholar 

  49. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Le Cam LM, Neuman J (eds) Proceedings 5th Berkeley symposium on mathematical statistics and probability, vol 1. University of California Press, Berkeley, pp 281–297

    Google Scholar 

  50. Malika C, Nadia G, Veronique B, Azam N (2014) NbClust package for determining the best number of clusters, R package version 2.0.2. http://CRAN.R-project.org/package=NbClust

  51. Marsden GR, McDonald M, Brackstone M (2003) A comparative assessment of driving behaviours at three sites. Eur J Transp Res 3(1):5–20. ISSN 1567–7141

    Google Scholar 

  52. McLachlan GJ, Krishnan T (1997) The EM algorithm and extensions. Wiley, New York

    Google Scholar 

  53. Mitchell T (1997) Machine learning, McGraw Hill, New York

    Google Scholar 

  54. Muezzinoglu MK, Zurada JM (2005) A recurrent RBF network model for nearest neighbor classification, IJCNN ’05. In: Proceedings of the 2005 IEEE international joint conference on neural networks 1:343–348

    Google Scholar 

  55. Newell GF (1961) Nonlinear effects in the dynamics of car following. Oper Res 9:209–229

    Article  MATH  MathSciNet  Google Scholar 

  56. Newell GF (2002) A simplified car-following theory: a lower order model. Transp Res B: Methodol 36(3):195–205

    Article  MathSciNet  Google Scholar 

  57. Olstam JJ, Tapani A (2004) Comparison of Car-following models. Swedish National Road and Transport Research Institute, VTI meddelande 960A

    Google Scholar 

  58. Orosz G, Krauskopf B, Wilson RE (2005) Bifurcations and multiple traffic jams in a car-following model with reaction-time delay. Phys D: Nonlinear Phenom 211(3):277–293

    Article  MATH  MathSciNet  Google Scholar 

  59. Papathanasopoulou V, Antoniou C (2015) Towards data-driven car-following models. Transp Res C: Emer Technol

    Google Scholar 

  60. Pindyck RS, Rubinfeld DL (1997) Econometric models and economic forecasts, 4th edn. Irwin McGraw-Hill, Boston

    Google Scholar 

  61. Pipes LA (1953) An operational analysis of traffic dynamics. J Appl Phys 24(3):274–281

    Article  MathSciNet  Google Scholar 

  62. Punzo V, Formisano DJ, Torrieri V (2005) A non-stationary kalman filter for the estimation of accurate multiple car-following data. In: Proceedings of the 84th annual meeting TRB, Washington, D.C

    Google Scholar 

  63. Punzo V, Borzacchiello MT, Ciuffo B (2011) On the assessment of vehicle trajectory data accuracy and application to the next generation simulation (NGSIM) program data. Transp Res C: Emer Technol 19(6):1243–1262

    Google Scholar 

  64. R Development Core Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. www.R-project.org. Accessed 26 Sept 2014

  65. Rakha H, Wang W (2009) Procedure for calibrating Gipps car-following model. Transp Res Rec 2124:113–124

    Article  Google Scholar 

  66. Ranjitkar P, Suzuki H, Nakatsuji T (2005) Microscopic traffic data with real-time kinematic global positioning system. In: Proceedings of annual meeting of infrastructure planning and management, Japan Society of Civil Engineer, Miyazaki, Preprint C.D., Dec 2005

    Google Scholar 

  67. Reuschel R (1950) Fahrzeugbewegungen in der Kolonne. Osterreichisches Ing Archiv 4:193–215

    MATH  Google Scholar 

  68. Roughan M, Sen S, Spatscheck O, Duffield N (2004) Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification. In: Proceedings of the 4th ACM SIGCOMM conference on Internet measurement. ACM, pp 135–148

    Google Scholar 

  69. Sawada S (2002) Generalized optimal velocity model for traffic flow. Int J Mod Phys C 13(01):1–12

    Article  MATH  Google Scholar 

  70. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MATH  Google Scholar 

  71. Spyropoulou I (2007) Gipps car-following model—an in-depth analysis. Transportmetrica 3(3):231–245

    Google Scholar 

  72. Subramanian H (1996) Estimation of car-following models (Doctoral dissertation, Massachusetts Institute of Technology)

    Google Scholar 

  73. Sun L, Zhou J (2005) Development of multiregime speed-density relationships by cluster analysis. Transp Res Rec: J Trans Res Board 1934(1):64–71

    Article  MathSciNet  Google Scholar 

  74. Thiemann C, Treiber M, Kesting A (2008) Estimating acceleration and lane-changing dynamics from next generation simulation trajectory data. Transp Res Record 90–101

    Google Scholar 

  75. Toledo T (2003) Integrated driving behaviour modelling. Ph.D. thesis, Massachusetts Institute of Technology

    Google Scholar 

  76. Tordeux A, Lassarre S, Roussignol M (2010) An adaptive time gap car-following model. Transp Res B 44(8–9):1115–1131

    Article  Google Scholar 

  77. Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62(2):1805

    Article  Google Scholar 

  78. Treiber M, Kesting A, Helbing D (2006) Delays, inaccuracies and anticipation in microscopic traffic models. Phys A 360(1):71–88

    Article  Google Scholar 

  79. Underwood RT (1961) Speed volume and density relationships: quality and theory of traffic flow. Bureau of highway traffic, Yale University, New Haven, pp 141–188

    Google Scholar 

  80. US Department of Transportation (2012) NGSIM—Next generation simulation. http://www.ngsim.fhwa.dot.gov

  81. van Lint JWC (2005) Accurate freeway travel time prediction with state-space neural networks under missing data. Transp Res C: Emer Technol 13:347–369

    Article  Google Scholar 

  82. van Lint JWC (2008) Online learning solutions for freeway travel time prediction. IEEE Trans Intell Transp Syst 9(1):38–47

    Google Scholar 

  83. Vlahogianni EI, Karlaftis MG, Golias JC (2005) Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp Res C 13(3):211–234

    Article  Google Scholar 

  84. Vlahogianni EI, Karlaftis MG, Golias JC (2008) Temporal evolution of short-term urban traffic flow: a nonlinear dynamics approach. Comput Aided Civ Infrastruct Eng 23:536–548

    Article  Google Scholar 

  85. Wang L, Rong J, Liu X (2005) The classification of car-following behavior in urban expressway based on fuzzy clustering analysis. In: Proceedings of the 84th annual meeting of the transportation research board, Washington, DC

    Google Scholar 

  86. Wiedemann R (1974) Simulation des Straenverkehrsflusses. Schriftenreihe des Instituts fuer Verkehrswesen, Universitaet Karlsruhe Heft 8

    Google Scholar 

  87. Wiedemann R, Reiter U (1992) Microscopic traffic simulation: the simulation system MISSION, background and actual state. CEC Project ICARUS (V1052), Final Report, vol 2. CEC, Brussels (Appendix A)

    Google Scholar 

  88. Yang Q, Koutsopoulos HN (1996) A microscopic traffic simulator for evaluation of dynamic traffic management systems. Transp Res C 4(3):113–129

    Article  Google Scholar 

  89. Zhang HM, Kim T (2005) A car-following theory for multiphase vehicular traffic flow. Transp Res B 39:385–399

    Article  Google Scholar 

  90. Zhang J, Wang FY, Wang K, Lin WH, Xu X, Chen C (2011) Data-driven intelligent transportation systems: a survey. IEEE Trans Int Transp Syst 12(4):1624–1639

    Article  Google Scholar 

  91. Zhao X, Gao Z (2005) A new car-following model: full velocity and acceleration difference model. Eur Phys J B-Condens Matter Complex Syst 47(1):145–150

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Vincenzo Punzo from the University of Napoli–Federico II for kindly providing the data collected from Napoli and the FHWA for making the NGSIM data-sets freely available. This research has been supported by the Action: ARISTEIA-II (Action’s Beneficiary: General Secretariat for Research and Technology), co-financed by the European Union (European Social Fund – ESF) and Greek national funds project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileia Papathanasopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Papathanasopoulou, V., Antoniou, C. (2015). Simulation Optimization of Car-Following Models Using Flexible Techniques. In: Lagaros, N., Papadrakakis, M. (eds) Engineering and Applied Sciences Optimization. Computational Methods in Applied Sciences, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-18320-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18320-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18319-0

  • Online ISBN: 978-3-319-18320-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics