Skip to main content

Tailoring Macroscale Response of Mechanical and Heat Transfer Systems by Topology Optimization of Microstructural Details

  • Chapter
  • First Online:

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 38))

Abstract

The aim of this book chapter is to demonstrate a methodology for tailoring macroscale response by topology optimizing microstructural details. The microscale and macroscale response are completely coupled by treating the full model. The multiscale finite element method (MsFEM) for high-contrast material parameters is proposed to alleviate the high computational cost associated with solving the discrete systems arising during the topology optimization process. Problems within important engineering areas, heat transfer and linear elasticity, are considered for exemplifying the approach. It is demonstrated that it is important to account for the boundary effects to ensure prescribed behavior of the macrostructure. The obtained microstructures are designed for specific applications, in contrast to more traditional homogenization approaches where the microstructure is designed for specific material properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aage N, Andreassen E, Lazarov BS (2014) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multi Optim 1–8. doi:10.1007/s00158-014-1157-0

  2. Aage N, Lazarov B (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multi Optim 47(4):493–505. doi:10.1007/s00158-012-0869-2

    Article  MATH  MathSciNet  Google Scholar 

  3. Alexandersen J, Lazarov BS (2015) Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput Methods Appl Mech Eng 290(1):156–182. doi:10.1016/j.cma.2015.02.028

  4. Amir O, Aage N, Lazarov BS (2014) On multigrid-CG for efficient topology optimization. Struct Multi Optim 49(5):815–829 (2014). doi:10.1007/s00158-013-1015-5

  5. Andreassen E, Lazarov BS, Sigmund O (2014) Design of manufacturable 3d extremal elastic microstructure. Mech Mater 69(1):1–10. doi:10.1016/j.mechmat.2013.09.018

  6. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224. doi:10.1016/0045-7825(88)90086-2

  7. Bendsoe MP, Sigmund O (2003) Topology optimization—Theory, methods and applications. Springer, Berlin

    Google Scholar 

  8. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  9. Braess D (2007) Finite elements: theory, fast solvers, and applications in solid mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459

    Article  MATH  Google Scholar 

  11. Buck M, Iliev O, Andrä H (2013) Multiscale finite element coarse spaces for the application to linear elasticity. Central European Journal of Mathematics 11(4):680–701. doi:10.2478/s11533-012-0166-8

    Article  MATH  MathSciNet  Google Scholar 

  12. Coelho P, Fernandes P, Guedes J, Rodrigues H (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multi Optim 35:107–115. doi:10.1007/s00158-007-0141-3

    Article  Google Scholar 

  13. Coelho P, Fernandes P, Rodrigues H, Cardoso J, Guedes J (2009) Numerical modeling of bone tissue adaptationa hierarchical approach for bone apparent density and trabecular structure. J Biomech 42(7):830–837. doi:10.1016/j.jbiomech.2009.01.020

  14. Deaton J, Grandhi R (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multi Optim 49(1):1–38. doi:10.1007/s00158-013-0956-z

  15. Efendiev Y, Galvis J (2011) A domain decomposition preconditioner for multiscale high-contrast problems. In: Huang Y, Kornhuber R, Widlund O, Xu J, Barth TJ, Griebel M, Keyes DE, Nieminen RM, Roose D, Schlick T (eds) Domain decomposition methods in science and engineering XIX, lecture notes in computational science and engineering. Springer, Berlin, pp 189–196. doi:10.1007/978-3-642-11304-8 20

    Chapter  Google Scholar 

  16. Efendiev Y, Galvis J, Hou TY (2013) Generalized multiscale finite element methods (gmsfem). J Comput Phys 251(0):116–135. doi:10.1016/j.jcp.2013.04.045

  17. Efendiev Y, Galvis J, Lazarov R, Willems J (2012) Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESAIM: Math Model Numer Anal 46:1175–1199

    Article  MATH  MathSciNet  Google Scholar 

  18. Efendiev Y, Galvis J, Wu XH (2011) Multiscale finite element methods for high-contrast problems using local spectral basis functions. J Comput Phys 230(4):937–955. doi:10.1016/j.jcp.2010.09.026

  19. Efendiev Y, Hou TY (2009) Multiscale finite element methods: theory and applications. Springer, Berlin

    Google Scholar 

  20. Galvis J, Efendiev Y (2010) Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model Simul 8(4):1461–1483. doi:10.1137/090751190

  21. Jansen M, Lazarov B, Schevenels M, Sigmund O (2013) On the similarities between micro/nano lithography and topology optimization projection methods. Struct Multi Optim 48(4):717–730. doi:10.1007/s00158-013-0941-6

  22. Lazarov B (2014) Topology optimization using multiscale finite element method for high-contrast media In: Lirkov I, Margenov S, Waniewski J (eds) Large-scale scientific computing, lecture notes in computer science, pp 339–346. Springer, Berlin. doi:10.1007/978-3-662-43880-038

  23. Lazarov BS, Schevenels M, Sigmund O (2012) Topology optimization considering material and geometric uncertainties using stochastic collocation methods. Struct Multi Optim 46:597–612. doi:10.1007/s00158-012-0791-7

  24. Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Meth Eng 86(6):765–781. doi:10.1002/nme.3072

  25. Maitre OPL, Knio OM (2010) Spectral Methods for uncertainty quantification: with applications to computational fluid dynamics. Springer, Berlin

    Google Scholar 

  26. Saad Y (2003) Iterative methods for sparse linear systems. SIAM, Philadelphia

    Google Scholar 

  27. Schevenels M, Lazarov B, Sigmund O (2011) Robust topology optimization accounting for spatially varying manufacturing errors. Comput Meth Appl Mech Eng 200(49–52):3613–3627. doi:10.1016/j.cma.2011.08.006

  28. Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Sol Struct 31(17):2313–2329. doi:10.1016/0020-7683(94)90154-6

  29. Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20(4):351–368). doi:10.1016/0167-6636(94)00069-7

  30. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multi Optim 48(6):1031–1055. doi:10.1007/s00158-013-0978-6

  31. Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Meth Eng 24:359–373

    Article  MATH  MathSciNet  Google Scholar 

  32. Torquato S (2002) Random heterogeneous materials. Springer, Berlin

    Google Scholar 

  33. Vassilevski PS (2008) Multilevel block factorization preconditioners: matrix-based analysis and algorithms for solving finite element equations. Springer, New York

    Google Scholar 

  34. Wang F, Lazarov B, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidi Optim 43(6):767–784. doi:10.1007/s00158-010-0602-y

  35. Wang F, Sigmund O, Jensen JS (2014) Design of materials with prescribed nonlinear properties. J Mech Phys Sol 69(1):156–174. doi:10.1016/j.jmps.2014.05.003

  36. Zhou M, Lazarov BS, Sigmund O (2014) Topology optimization for optical projection lithography with manufacturing uncertainties. Appl Opt 53(12):2720–2729. doi:10.1364/AO.53.002720

Download references

Acknowledgments

Both authors were funded by Villum Fonden through the NextTop project, as well as the EU FP7-MC-IAPP programme LaScISO. The authors would like to thank Dr. Fengwen Wang for providing them with optimized periodic microstructural design of negative Poisson’s ratio material utilized as initial guess in the last example.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Alexandersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alexandersen, J., Lazarov, B.S. (2015). Tailoring Macroscale Response of Mechanical and Heat Transfer Systems by Topology Optimization of Microstructural Details. In: Lagaros, N., Papadrakakis, M. (eds) Engineering and Applied Sciences Optimization. Computational Methods in Applied Sciences, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-18320-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18320-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18319-0

  • Online ISBN: 978-3-319-18320-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics