Skip to main content

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 660 Accesses

Abstract

The advent of induced pluripotent stem cells (iPSC) revolutionized the approach of studying cardiac diseases and development. The iPSC technology allows the generation of human cardiac platforms in vitro that can be used for modeling a disease of interest, for testing and discovering novel therapeutics. Furthermore, the possibility of generating genetically matched human cardiac progenitor cells and cardiomyocytes (CMs) have much potential in regenerative medicine. This chapter provides an overview of the cardiac models that have been developed thus far using iPSC and will entail: first, their advantages over other existing models; second, the impact of this technology for the understanding of pathogenesis of cardiac diseases with a particular focus on cardiomyopathies; and third, the importance of development of genome-editing strategies for the causal definition of mechanisms of diseases. In addition, how this gain of knowledge correlates with the development of novel therapeutic options for disease treatment and possible cure will also be discussed.

A small section is also dedicated to the methods for generating CMs from iPSC and to the advances that have been made to obtain pure populations of cardiac cells at high efficiency. Finally to conclude, a perspective of the current limitations, which will be the key to overcoming barriers to enter the clinical practice, will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAVS1:

Adeno-associated virus integration site 1

AFM:

Atomic force microscopy

ANF:

Atrial natriuretic factor

AP:

Action potential

APD:

Action potential duration

ARVD/C:

Arrhythmogenic right ventricular dysplasia/cardiomyopathy

bFGF:

Basic fibroblast growth factor

BMP2:

Bone morphogenic protein 2

bpm:

Beats per minute

BTHS:

Barth syndrome

CACNA1C:

Calcium Channel, Voltage-Dependent, L Type, Alpha 1C Subunit

CASQ2:

Calsequestrin gene

CMs:

Cardiomyocytes

CNX43:

Connexin 43

CPVT:

Catecholaminergic polymorphic ventricular tachycardia

CRISPR:

Clustered regularly inter-spaced short palindromic repeats

CsA:

Cyclosporin A

DADs:

Delayed afterdepolarizations

DCM:

Dilated cardiomyopathy

DES:

Desmin gene

Dkk-1:

Dickkopf-related protein

DSBs:

Double-strand DNA cleavage

EADs:

Early-afterdepolarization

EBs:

Embryoid bodies

END2:

Visceral endoderm-like cells

ESCs:

Embryonic stem cells

ET-1:

Endothelin-1

FPD:

Field potential duration

FRDA:

Friedreich ataxia

FXN:

Fataxin gene

GAA:

Acid-α-glucosidase

GATA4:

GATA binding protein 4

HCM:

Hypertrophic cardiomyopathy

HDAd:

Helper-dependent adenoviral vectors

HR:

Homologous Recombination

IFNβ1:

Interferon beta 1

iPSC:

Induced pluripotent stem cells

iPSC-CMs:

iPSC-derived cardiomyocytes

KCNH2:

Potassium voltage-gated channel, subfamily H (Eag-related), member 2

KCNJ2:

Potassium inwardly rectifying channel, subfamily J, Member 2

KCNQ1:

Potassium voltage-gated channel, KQT-like subfamily, member 1

LAMP:

Lysosome-associated membrane protein

LQT:

Long QT syndrome

MEA:

Multi-electrode array

MEF2C:

Myocyte enhancer factor 2C

MHY7:

Beta-myosin heavy chain gene

MYL2:

Myosin, light chain 2, regulatory, cardiac, slow

NE:

Norepinephrine

NFAT:

Nuclear factor of activated T cells

NHEJ:

Nonhomologous end joining

PDTC:

Pyrrolidine dithiocarbamate

Pkp2:

Plakophilin-2 gene

PPARγ:

Peroxisome proliferator-activated receptor-gamma

PTPN11:

Protein tyrosine phosphatase, non-receptor type 11

RCM:

Restrictive cardiomyopathy

RNAi:

RNA interference

Ros:

Roscovitine

RYR2:

Ryanodine receptor gene

SCN5A:

Sodium channel, voltage-gated, type V, alpha subunit

Serca2a:

Sarcoplasmic reticulum Ca2+ ATPase

sgRNA:

Single chimeric guide RNA

ssODNs:

Single-strand DNA oligonucleotides

TALEN:

Transcription activator-like effector nuclease

TAZ:

Tafazzin

TGFβ:

Transforming growth factor beta

TNNT2:

Cardiac troponin T gene

VEGF:

Vascular endothelial growth factor

ZFN:

Zinc finger nucleases

References

  1. Davis RP, van den Berg CW, Casini S, Braam SR, Mummery CL. Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol Med. 2011;17(9):475–84. PubMed PMID: 21703926.

    Article  CAS  PubMed  Google Scholar 

  2. Priori SG, Napolitano C, Di Pasquale E, Condorelli G. Induced pluripotent stem cell-derived cardiomyocytes in studies of inherited arrhythmias. J Clin Invest. 2013;123(1):84–91. Pubmed PMID: 23281414. Pubmed Central PMCID: 3533271.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Moretti A, Laugwitz KL, Dorn T, Sinnecker D, Mummery C. Pluripotent Stem Cell Models of Human Heart Disease. Cold Spring Harb Perspect Med. 2013;3(11):pii.

    Article  Google Scholar 

  4. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. PubMed PMID: 18035408.

    Article  CAS  PubMed  Google Scholar 

  5. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A. 2008;105(15):5856–61. PubMed PMID: 18391196. Pubmed Central PMCID: 2311361.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 2008;133(2):250–64. Pubmed Central PMCID: 2615249.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Carpenter L, Carr C, Yang CT, Stuckey DJ, Clarke K, Watt SM. Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev. 2012;21(6):977–86. PubMed PMID: 22182484. Pubmed Central PMCID: 3315757.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol. 2007;50(19):1884–93. PubMed PMID: 17980256.

    Article  PubMed  Google Scholar 

  9. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25(9):1015–24. PubMed PMID: 17721512.

    Article  CAS  PubMed  Google Scholar 

  10. Chong JJ, Murry CE. Cardiac regeneration using pluripotent stem cells–progression to large animal models. Stem Cell Res. 2014;13(3 Pt B):654–65. PubMed PMID: 25087896. Pubmed Central PMCID: 4253057.

    Article  CAS  PubMed  Google Scholar 

  11. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510(7504):273–7. PubMed PMID: 24776797. Pubmed Central PMCID: 4154594.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hoekstra M, Mummery CL, Wilde AA, Bezzina CR, Verkerk AO. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Front Physiol. 2012;3:346. PubMed PMID: 23015789. Pubmed Central PMCID: 3449331.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003;107(21):2733–40. PubMed PMID: 12742992.

    Article  CAS  PubMed  Google Scholar 

  14. Bin Z, Sheng LG, Gang ZC, Hong J, Jun C, Bo Y, et al. Efficient cardiomyocyte differentiation of embryonic stem cells by bone morphogenetic protein-2 combined with visceral endoderm-like cells. Cell Biol Int. 2006;30(10):769–76. PubMed PMID: 16831561.

    Article  PubMed  Google Scholar 

  15. Graichen R, Xu X, Braam SR, Balakrishnan T, Norfiza S, Sieh S, et al. Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation. 2008;76(4):357–70. PubMed PMID: 18021257.

    Article  CAS  PubMed  Google Scholar 

  16. Yan P, Nagasawa A, Uosaki H, Sugimoto A, Yamamizu K, Teranishi M, et al. Cyclosporin-A potently induces highly cardiogenic progenitors from embryonic stem cells. Biochem Biophys Res Commun. 2009;379(1):115–20. PubMed PMID: 19094963.

    Article  CAS  PubMed  Google Scholar 

  17. Fujiwara M, Yan P, Otsuji TG, Narazaki G, Uosaki H, Fukushima H, et al. Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A. PLoS One. 2011;6(2), e16734. PubMed PMID: 21364991. Pubmed Central PMCID: 3043062.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 2012;111(3):344–58. PubMed PMID: 22821908. Pubmed Central PMCID: 3578601.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ojala M, Rajala K, Pekkanen-Mattila M, Miettinen M, Huhtala H, Aalto-Setala K. Culture conditions affect cardiac differentiation potential of human pluripotent stem cells. PLoS One. 2012;7(10), e48659. PubMed PMID: 23119085. Pubmed Central PMCID: 3485380.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Thorrez L, Sampaolesi M. The future of induced pluripotent stem cells for cardiac therapy and drug development. Curr Pharm Des. 2011;17(30):3258–70. PubMed PMID: 21919876.

    Article  CAS  PubMed  Google Scholar 

  21. Yoon BS, Yoo SJ, Lee JE, You S, Lee HT, Yoon HS. Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation. 2006;74(4):149–59. PubMed PMID: 16683985.

    Article  CAS  PubMed  Google Scholar 

  22. Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood. 2005;106(5):1601–3. PubMed PMID: 15914555.

    Article  CAS  PubMed  Google Scholar 

  23. Kim YY, Ku SY, Jang J, Oh SK, Kim HS, Kim SH, et al. Use of long-term cultured embryoid bodies may enhance cardiomyocyte differentiation by BMP2. Yonsei Med J. 2008;49(5):819–27. PubMed PMID: 18972603. Pubmed Central PMCID: 2615363.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Gai H, Leung EL, Costantino PD, Aguila JR, Nguyen DM, Fink LM, et al. Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol Int. 2009;33(11):1184–93. PubMed PMID: 19729070.

    Article  CAS  PubMed  Google Scholar 

  25. Filipczyk AA, Passier R, Rochat A, Mummery CL. Regulation of cardiomyocyte differentiation of embryonic stem cells by extracellular signalling. Cell Mol Life Sci. 2007;64(6):704–18. PubMed PMID: 17380311. Pubmed Central PMCID: 2778649.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gaur M, Ritner C, Sievers R, Pedersen A, Prasad M, Bernstein HS, et al. Timed inhibition of p38MAPK directs accelerated differentiation of human embryonic stem cells into cardiomyocytes. Cytotherapy. 2010;12(6):807–17. PubMed PMID: 20586669. Pubmed Central PMCID: 2946443.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011;8(2):228–40. PubMed PMID: 21295278.

    Article  CAS  PubMed  Google Scholar 

  28. Paige SL, Osugi T, Afanasiev OK, Pabon L, Reinecke H, Murry CE. Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS One. 2010;5(6), e11134. PubMed PMID: 20559569. Pubmed Central PMCID: 2886114.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Qyang Y, Martin-Puig S, Chiravuri M, Chen S, Xu H, Bu L, et al. The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway. Cell Stem Cell. 2007;1(2):165–79. PubMed PMID: 18371348.

    Article  CAS  PubMed  Google Scholar 

  30. Xu XQ, Graichen R, Soo SY, Balakrishnan T, Rahmat SN, Sieh S, et al. Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation. 2008;76(9):958–70. PubMed PMID: 18557764.

    CAS  PubMed  Google Scholar 

  31. Savla JJ, Nelson BC, Perry CN, Adler ED. Induced pluripotent stem cells for the study of cardiovascular disease. J Am Coll Cardiol. 2014;64(5):512–9. PubMed PMID: 25082586.

    Article  PubMed  Google Scholar 

  32. Di Pasquale E, Song B, Condorelli G. Generation of human cardiomyocytes: a differentiation protocol from feeder-free human induced pluripotent stem cells. J Vis Exp. 2013;76. PubMed PMID: 23851455.

    Google Scholar 

  33. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453(7194):524–8. PubMed PMID: 18432194.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK, et al. Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res. 2012;111(9):1125–36. Pubmed Central PMCID: 3482164.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A. 2012;109(27):E1848–57. Pubmed Central PMCID: 3390875.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc. 2013;8(1):162–75. PubMed PMID: 23257984. Pubmed Central PMCID: 3612968.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T, et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 2013;12(1):127–37. PubMed PMID: 23168164.

    Article  CAS  PubMed  Google Scholar 

  38. Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012;10(6):678–84. PubMed PMID: 22704507.

    Article  CAS  PubMed  Google Scholar 

  39. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010;363(15):1397–409. PubMed PMID: 20660394.

    Article  CAS  PubMed  Google Scholar 

  40. Li GR, Feng J, Yue L, Carrier M, Nattel S. Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ Res. 1996;78(4):689–96. PubMed PMID: 8635226.

    Article  CAS  PubMed  Google Scholar 

  41. Egashira T, Yuasa S, Suzuki T, Aizawa Y, Yamakawa H, Matsuhashi T, et al. Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovasc Res. 2012;95(4):419–29. PubMed PMID: 22739119.

    Article  CAS  PubMed  Google Scholar 

  42. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature. 2011;471(7337):225–9. PubMed PMID: 21240260.

    Article  CAS  PubMed  Google Scholar 

  43. Lahti AL, Kujala VJ, Chapman H, Koivisto AP, Pekkanen-Mattila M, Kerkela E, et al. Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture. Dis Model Mech. 2012;5(2):220–30. PubMed PMID: 22052944. Pubmed Central PMCID: 3291643.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Matsa E, Rajamohan D, Dick E, Young L, Mellor I, Staniforth A, et al. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur Heart J. 2011;32(8):952–62. PubMed PMID: 21367833. Pubmed Central PMCID: 3076668.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Bellin M, Casini S, Davis RP, D’Aniello C, Haas J, Ward-van Oostwaard D, et al. Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO J. 2013;32(24):3161–75. PubMed PMID: 24213244. Pubmed Central PMCID: 3981141.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Matsa E, Dixon JE, Medway C, Georgiou O, Patel MJ, Morgan K, et al. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes. Eur Heart J. 2014;35(16):1078–87. PubMed PMID: 23470493. Pubmed Central PMCID: 3992427.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Terrenoire C, Wang K, Tung KW, Chung WK, Pass RH, Lu JT, et al. Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J Gen Physiol. 2013;141(1):61–72. PubMed PMID: 23277474. Pubmed Central PMCID: 3536519.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Ma D, Wei H, Zhao Y, Lu J, Li G, Sahib NB, et al. Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. Int J Cardiol. 2013;168(6):5277–86. PubMed PMID: 23998552.

    Article  PubMed  Google Scholar 

  49. Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J, et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature. 2011;471(7337):230–4. PubMed PMID: 21307850. Pubmed Central PMCID: 3077925.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Jung CB, Moretti A. Mederos y Schnitzler M, Iop L, Storch U, Bellin M, et al. Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med. 2012;4(3):180–91. PubMed PMID: 22174035. Pubmed Central PMCID: 3376852.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Itzhaki I, Maizels L, Huber I, Gepstein A, Arbel G, Caspi O, et al. Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells. J Am Coll Cardiol. 2012;60(11):990–1000. PubMed PMID: 22749309.

    Article  CAS  PubMed  Google Scholar 

  52. Fatima A, Xu G, Shao K, Papadopoulos S, Lehmann M, Arnaiz-Cot JJ, et al. In vitro modeling of ryanodine receptor 2 dysfunction using human induced pluripotent stem cells. Cell Physiol Biochem. 2011;28(4):579–92. PubMed PMID: 22178870. Pubmed Central PMCID: 3709175.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Di Pasquale E, Lodola F, Miragoli M, Denegri M, Avelino-Cruz JE, Buonocore M, et al. CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia. Cell Death Dis. 2013;4, e843. PubMed PMID: 24113177. Pubmed Central PMCID: 3824678.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Kujala K, Paavola J, Lahti A, Larsson K, Pekkanen-Mattila M, Viitasalo M, et al. Cell model of catecholaminergic polymorphic ventricular tachycardia reveals early and delayed afterdepolarizations. PLoS One. 2012;7(9), e44660. PubMed PMID: 22962621. Pubmed Central PMCID: 3433449.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Novak A, Barad L, Zeevi-Levin N, Shick R, Shtrichman R, Lorber A, et al. Cardiomyocytes generated from CPVTD307H patients are arrhythmogenic in response to beta-adrenergic stimulation. J Cell Mol Med. 2012;16(3):468–82. PubMed PMID: 22050625.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. McNally EM, Golbus JR, Puckelwartz MJ. Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin Invest. 2013;123(1):19–26. PubMed PMID: 23281406. Pubmed Central PMCID: 3533274.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Watkins H, Ashrafian H, Redwood C. Inherited cardiomyopathies. N Engl J Med. 2011;364(17):1643–56. PubMed PMID: 21524215.

    Article  CAS  PubMed  Google Scholar 

  58. Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10(9):531–47. PubMed PMID: 23900355.

    Article  CAS  PubMed  Google Scholar 

  59. Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med. 2012;4(130):130ra47. PubMed PMID: 22517884. Pubmed Central PMCID: 3657516.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Siu CW, Lee YK, Ho JC, Lai WH, Chan YC, Ng KM, et al. Modeling of lamin A/C mutation premature cardiac aging using patient-specific induced pluripotent stem cells. Aging. 2012;4(11):803–22. PubMed PMID: 23362510. Pubmed Central PMCID: 3560431.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Tse HF, Ho JC, Choi SW, Lee YK, Butler AW, Ng KM, et al. Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing. Hum Mol Genet. 2013;22(7):1395–403. PubMed PMID: 23300193.

    Article  CAS  PubMed  Google Scholar 

  62. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA, et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med. 2003;348(4):295–303. PubMed PMID: 12540642.

    Article  PubMed  Google Scholar 

  63. Lan F, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK, Wang L, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 2013;12(1):101–13. PubMed PMID: 23290139. Pubmed Central PMCID: 3638033.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Uesugi M, Ojima A, Taniguchi T, Miyamoto N, Sawada K. Low-density plating is sufficient to induce cardiac hypertrophy and electrical remodeling in highly purified human iPS cell-derived cardiomyocytes. J Pharmacol Toxicol Methods. 2014;69(2):177–88. PubMed PMID: 24296355.

    Article  CAS  PubMed  Google Scholar 

  65. Tanaka A, Yuasa S, Mearini G, Egashira T, Seki T, Kodaira M, et al. Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes. J Am Heart Assoc. 2014;3(6), e001263. PubMed PMID: 25389285.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Awad MM, Calkins H, Judge DP. Mechanisms of disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Nat Clin Pract Cardiovasc Med. 2008;5(5):258–67. PubMed PMID: 18382419. Pubmed Central PMCID: 2822988.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Caspi O, Huber I, Gepstein A, Arbel G, Maizels L, Boulos M, et al. Modeling of arrhythmogenic right ventricular cardiomyopathy with human induced pluripotent stem cells. Circ Cardiovasc Genet. 2013;6(6):557–68. PubMed PMID: 24200905.

    Article  CAS  PubMed  Google Scholar 

  68. Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, et al. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature. 2013;494(7435):105–10. PubMed PMID: 23354045. Pubmed Central PMCID: 3753229.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Ma D, Wei H, Lu J, Ho S, Zhang G, Sun X, et al. Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2013;34(15):1122–33. PubMed PMID: 22798562.

    Article  CAS  PubMed  Google Scholar 

  70. Sharma A, Marceau C, Hamaguchi R, Burridge PW, Rajarajan K, Churko JM, et al. Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus B3-induced myocarditis and antiviral drug screening platform. Circ Res. 2014;115(6):556–66. PubMed PMID: 25015077. Pubmed Central PMCID: 4149868.

    Article  CAS  PubMed  Google Scholar 

  71. Sinnecker D, Laugwitz KL, Moretti A. Extending human induced pluripotent stem cell technology to infectious diseases: new model for viral myocarditis. Circ Res. 2014;115(6):537–9. PubMed PMID: 25170088.

    Article  CAS  PubMed  Google Scholar 

  72. Carvajal-Vergara X, Sevilla A, D’Souza SL, Ang YS, Schaniel C, Lee DF, et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature. 2010;465(7299):808–12. PubMed PMID: 20535210. Pubmed Central PMCID: 2885001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Houtkooper RH, Turkenburg M, Poll-The BT, Karall D, Perez-Cerda C, Morrone A, et al. The enigmatic role of tafazzin in cardiolipin metabolism. Biochim Biophys Acta. 2009;1788(10):2003–14. PubMed PMID: 19619503.

    Article  CAS  PubMed  Google Scholar 

  74. Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med. 2014;20(6):616–23. PubMed PMID: 24813252. Pubmed Central PMCID: 4172922.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol. 2009;256 Suppl 1:3–8. PubMed PMID: 19283344.

    Article  PubMed  Google Scholar 

  76. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271(5254):1423–7. PubMed PMID: 8596916.

    Article  CAS  PubMed  Google Scholar 

  77. Hick A, Wattenhofer-Donze M, Chintawar S, Tropel P, Simard JP, Vaucamps N, et al. Neurons and cardiomyocytes derived from induced pluripotent stem cells as a model for mitochondrial defects in Friedreich’s ataxia. Dis Model Mech. 2013;6(3):608–21. PubMed PMID: 23136396. Pubmed Central PMCID: 3634645.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Drawnel FM, Boccardo S, Prummer M, Delobel F, Graff A, Weber M, et al. Disease modeling and phenotypic drug screening for diabetic cardiomyopathy using human induced pluripotent stem cells. Cell Rep. 2014;9(3):810–21. PubMed PMID: 25437537.

    Article  CAS  PubMed  Google Scholar 

  79. Huang HP, Chen PH, Hwu WL, Chuang CY, Chien YH, Stone L, et al. Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification. Hum Mol Genet. 2011;20(24):4851–64. PubMed PMID: 21926084.

    Article  CAS  PubMed  Google Scholar 

  80. Raval KK, Tao R, White BE, De Lange WJ, Koonce CH, Yu J, et al. Pompe Disease Results in a Golgi-based Glycosylation Deficit in Human Induced Pluripotent Stem Cell-derived Cardiomyocytes. J Biol Chem. 2015;290(5):3121–36. PubMed PMID: 25488666.

    Article  CAS  PubMed  Google Scholar 

  81. Wang Y, Liang P, Lan F, Wu H, Lisowski L, Gu M, et al. Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing. J Am Coll Cardiol. 2014;64(5):451–9. PubMed PMID: 25082577. Pubmed Central PMCID: 4149735.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Zwaka TP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotechnol. 2003;21(3):319–21. PubMed PMID: 12577066.

    Article  CAS  PubMed  Google Scholar 

  83. Aizawa E, Hirabayashi Y, Iwanaga Y, Suzuki K, Sakurai K, Shimoji M, et al. Efficient and accurate homologous recombination in hESCs and hiPSCs using helper-dependent adenoviral vectors. Mol Ther. 2012;20(2):424–31. PubMed PMID: 22146343. Pubmed Central PMCID: 3277220.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Liu GH, Suzuki K, Qu J, Sancho-Martinez I, Yi F, Li M, et al. Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell. 2011;8(6):688–94. Pubmed Central PMCID: 3480729.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Hajjar RJ, Hulot JS. Modeling CVD in human pluripotent cells by genome editing. J Am Coll Cardiol. 2014;64(5):460–2. PubMed PMID: 25082578.

    Article  PubMed  Google Scholar 

  86. Gonzalez F, Zhu Z, Shi ZD, Lelli K, Verma N, Li QV, et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. 2014;15(2):215–26. PubMed PMID: 24931489. Pubmed Central PMCID: 4127112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013;10(10):957–63. PubMed PMID: 24076990. Pubmed Central PMCID: 4051438.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods. 2011;8(9):753–5. PubMed PMID: 21765410. Pubmed Central PMCID: 3617923.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014;345(6201):1184–8. PubMed PMID: 25123483.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Di Pasquale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nakahama, H., Di Pasquale, E. (2015). iPS Cells and Cardiomyopathies. In: Zatz, M., Keith Okamoto, O. (eds) Stem Cells in Modeling Human Genetic Diseases. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-18314-5_6

Download citation

Publish with us

Policies and ethics