Skip to main content

Self-Organized 3D Photonic Superstructure: Blue Phase Liquid Crystal

  • Chapter
  • First Online:
Anisotropic Nanomaterials

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Blue phase liquid crystals (BPLCs) have attracted considerable attention in recent years owing to their unique periodic structure and electro-optic properties. Besides the potential applications in the next generation display, BPLC with a cubic lattice structure can be regarded as a self-organized three-dimenstional (3D) photonic crystal that can be applied for photonic devices such as optical filter, optical attenuator, phase modulator, laser source and so on. This chapter will introduce the formation of BPLCs from both theoretical and experimental points of view. The stability and temperature range of BPLCs are also discussed followed by its photonic crystal structure, lattice orientation and phase identification. After a basic overview, this chapter will further introduce the applications of BPLCs, including controllability of photonic band gap with external fields, fast electro-optic Kerr effect, and optical nonlinear effect. This short summary shows that the century old intriguing BPLCs have diverse opportunities to offer in modern photonic materials and devices. Moreover, the current challenges in this area are expected to spark innovative ideas leading toward the design and engineering of new chiral materials that may furnish suitable BPLCs to produce advanced photonic materials that have desirable properties and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Reinitzer, Beiträge zur Kenntniss des Cholesterins. Monatsh. Chem. 9, 421–441 (1888)

    Google Scholar 

  2. H.K. Bisoyi, Q. Li, Liquid Crystals, Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, Hoboken, 2014), pp. 1–52

    Google Scholar 

  3. H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, Pinning effect on the photonic bandgaps of blue-phase liquid crystal. Appl. Opt. 50, 1606–1609 (2011)

    ADS  Google Scholar 

  4. H. Kikuchi, H. Higuchi, Y. Haseba, T. Iwata, Fast electro-optical switching in polymer-stabilized liquid crystalline blue phases for display application. SID Int. Symp. Dig. Tec. 38, 1737–1740 (2007)

    Google Scholar 

  5. D.L. Johnson, J.H. Flack, P.P. Crooker, Structure and properties of the cholesteric blue phases. Phys. Rev. Lett. 45, 641–644 (1980)

    ADS  Google Scholar 

  6. S. Meiboom, M. Sammon, W.F. Brinkman, Lattice of disclinations: the structure of the blue phases of cholesteric liquid crystals. Phys. Rev. A 27, 438–454 (1983)

    ADS  Google Scholar 

  7. B. Pansu, Geometrical model of the tetragonal BPX blue phase. J. Phys. II France 5, 573–585 (1995)

    Google Scholar 

  8. P.-G. De Gennes, J. Prost (ed.), The Physics of Liquid Crystals (Clarendon press, Oxford, 1993)

    Google Scholar 

  9. J.P. Sethna, D.C. Wright, N.D. Mermin, Relieving cholesteric frustration: the blue phase in a curved space. Phys. Rev. Lett. 51, 467–470 (1983)

    MathSciNet  ADS  Google Scholar 

  10. J.P. Sethna, Frustration, curvature, and defect lines in metallic glasses and the cholesteric blue phase. Phys. Rev. B 31, 6278–6297 (1985)

    ADS  Google Scholar 

  11. E. Dubois-violette, B. Pansu, Frustration and related topology of blue phases. Mol. Cryst. Liq. Cryst. 165, 151–182 (1988)

    Google Scholar 

  12. A. Saupe, On molecular structure and physical properties of thermotropic liquid crystals. Mol. Cryst. Liq. Cryst. 7, 59–74 (1969)

    Google Scholar 

  13. S. Meiboom, M. Sammon, D.W. Berreman, Lattice symmetry of the cholesteric blue phases. Phys. Rev. A 28, 3553–3560 (1983)

    ADS  Google Scholar 

  14. R.M. Hornreich, S. Shtrikman, C. Sommers, Photonic bands in simple and body-centered-cubic cholesteric blue phases. Phys. Rev. E 47, 2067–2072 (1993)

    ADS  Google Scholar 

  15. O. Henrich, K. Stratford, M.E. Cates, D. Marenduzzo, Structure of blue phase III of cholesteric liquid crystals. Phys. Rev. Lett. 106, 107801 (2011)

    ADS  Google Scholar 

  16. S. Brazovskii, S. Dmitriev, Phase transitions in cholesteric liquid crystals. Zh. Eksp. Teor. Fiz 69, 979–989 (1975)

    Google Scholar 

  17. R.M. Hornreich, S. Shtrikman, A body-centered cubic structure for the cholesteric blue phase. J. Phys. France 41, 335–340 (1980)

    Google Scholar 

  18. H. Kleinert, K. Maki, Lattice textures in cholesteric liquid crystals. Fortschr. Phys. 29, 219–259 (1981)

    MathSciNet  Google Scholar 

  19. R.M. Hornreich, S. Shtrikman, Landau theory of blue phases. Mol. Cryst. Liq. Cryst. 165, 183–211 (1988)

    Google Scholar 

  20. D. Wright, N. Mermin, Crystalline liquids: the blue phases. Rev. Modern Phys. 61, 385–432 (1989)

    ADS  Google Scholar 

  21. T. Seideman, The liquid-crystalline blue phases. Rep. Prog. Phys. 53, 659 (1990)

    ADS  Google Scholar 

  22. P.P. Crooker, in Chirality in Liquid Crystals, eds. by H.-S. Kitzerow, C. Bahr. Blue Phases (Springer, New York, 2001), pp. 186–222

    Google Scholar 

  23. S. Meiboom, J.P. Sethna, P.W. Anderson, W.F. Brinkman, Theory of the blue phase of cholesteric liquid crystals. Phys. Rev. Lett. 46, 1216–1219 (1981)

    ADS  Google Scholar 

  24. H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, M. Ozaki, Nanoparticle-stabilized cholesteric blue phases. Appl. Phys. Express 2, 121501 (2009)

    ADS  Google Scholar 

  25. L. Wang, W. He, X. Xiao, M. Wang, M. Wang, P. Yang, Z. Zhou, H. Yang, H. Yu, Y. Lu, Low voltage and hysteresis-free blue phase liquid crystal dispersed by ferroelectric nanoparticles. J. Mater. Chem. 22, 19629–19633 (2012)

    Google Scholar 

  26. M. Lavri, G. Cordoyiannis, S. Kralj, V. Tzitzios, G. Nounesis, Z. Kutnjak, Effect of anisotropic MoS2 nanoparticles on the blue phase range of a chiral liquid crystal. Appl. Opt. 52, E47–E52 (2013)

    ADS  Google Scholar 

  27. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, Polymer-stabilized liquid crystal blue phases. Nature Mater. 1, 64–68 (2002)

    ADS  Google Scholar 

  28. M. Ravnik, G.P. Alexander, J.M. Yeomans, S. Žumer, Three-dimensional colloidal crystals in liquid crystalline blue phases. Proc. Natl. Acad. Sci. U.S.A. 108, 5188–5192 (2011)

    ADS  Google Scholar 

  29. B. Rožič, V. Tzitzios, E. Karatairi, U. Tkalec, G. Nounesis, Z. Kutnjak, G. Cordoyiannis, R. Rosso, E.G. Virga, I. Muševič, S. Kralj, Theoretical and experimental study of the nanoparticle-driven blue phase stabilisation. Eur. Phys. J. E Soft Matter 34, 1–11 (2011)

    Google Scholar 

  30. J.-I. Fukuda, Stability of cholesteric blue phases in the presence of a guest component. Phys. Rev. E 86, 041704 (2012)

    ADS  Google Scholar 

  31. S. Yabu, Y. Tanaka, K. Tagashira, H. Yoshida, A. Fujii, H. Kikuchi, M. Ozaki, Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals. Opt. Lett. 36, 3578–3580 (2011)

    Google Scholar 

  32. H.S. Kitzerow, H. Schmid, A. Ranft, G. Heppke, R.A.M. Hikmet, J. Lub, Observation of blue phases in chiral networks. Liq. Cryst. 14, 911–916 (1993)

    Google Scholar 

  33. Y. Haseba, H. Kikuchi, T. Nagamura, T. Kajiyama, Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range. Adv. Mater. 17, 2311–2315 (2005)

    Google Scholar 

  34. Y. Chen, S.-T. Wu, Recent advances on polymer-stabilized blue phase liquid crystal materials and devices. J. Appl. Polym. Sci. 131, 40556 (2014)

    Google Scholar 

  35. J. Yan, S.-T. Wu, Polymer-stabilized blue phase liquid crystals: a tutorial. Opt. Mater. Express 1, 1527–1535 (2011)

    Google Scholar 

  36. F. Castles, S.M. Morris, J.M.C. Hung, M.M. Qasim, A.D. Wright, S. Nosheen, S.S. Choi, B.I. Outram, S.J. Elston, C. Burgess, L. Hill, T.D. Wilkinson, H.J. Coles, Stretchable liquid-crystal blue-phase gels. Nature Mater. 13, 817–821 (2014)

    ADS  Google Scholar 

  37. M. Ojima, T. Noma, H. Asagi, A. Fujii, M. Ozaki, H. Kikuchi, Pinning effect of mixed cellulose ester membrane on appearance of cholesteric blue phases. Appl. Phys. Express 2, 021502 (2009)

    ADS  Google Scholar 

  38. F. Castles, F.V. Day, S.M. Morris, D.H. Ko, D.J. Gardiner, M.M. Qasim, S. Nosheen, P.J.W. Hands, S.S. Choi, R.H. Friend, H.J. Coles, Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. Nat. Mater. 11, 599–603 (2012)

    ADS  Google Scholar 

  39. M. Nakata, Y. Takanishi, J. Watanabe, H. Takezoe, Blue phases induced by doping chiral nematic liquid crystals with nonchiral molecules. Phys. Rev. E 68, 041710 (2003)

    ADS  Google Scholar 

  40. H.J. Coles, M.N. Pivnenko, Liquid crystal ‘blue phases’ with a wide temperature range. Nature 436, 997–1000 (2005)

    ADS  Google Scholar 

  41. S. Aya, A. Zep, K. Aihara, K. Ema, D. Pociecha, E. Gorecka, F. Araoka, K. Ishikawa, H. Takezoe, Stable electro-optic response in wide-temperature blue phases realized in chiral asymmetric bent dimers. Opt. Mater. Express 4, 662–671 (2014)

    Google Scholar 

  42. J. Harden, B. Mbanga, N. Éber, K. Fodor-Csorba, S. Sprunt, J.T. Gleeson, A. Jákli, Giant flexoelectricity of bent-core nematic liquid crystals. Phys. Rev. Lett. 97, 157802 (2006)

    ADS  Google Scholar 

  43. H.J. Coles, M.J. Clarke, S.M. Morris, B.J. Broughton, A.E. Blatch, Strong flexoelectric behavior in bimesogenic liquid crystals. J. Appl. Phys. 99, 034104 (2006)

    ADS  Google Scholar 

  44. F. Castles, S.M. Morris, E.M. Terentjev, H.J. Coles, Thermodynamically stable blue phases. Phys. Rev. Lett. 104, 157801 (2010)

    ADS  Google Scholar 

  45. S.-T. Hur, M.-J. Gim, H.-J. Yoo, S.-W. Choi, H. Takezoe, Investigation for correlation between elastic constant and thermal stability of liquid crystalline blue phase I. Soft Matter 7, 8800–8803 (2011)

    ADS  Google Scholar 

  46. M. Kléman, The coexistence of cholesteric and 2-dimensional orders. J. Phys. France 46, 1193–1203 (1985)

    Google Scholar 

  47. J.-I. Fukuda, Stabilization of blue phases by the variation of elastic constants. Phys. Rev. E 85, 020701 (2012)

    ADS  Google Scholar 

  48. S. Shibayama, H. Higuchi, Y. Okumura, H. Kikuchi, Dendron-stabilized liquid crystalline blue phases with an enlarged controllable range of the photonic band for tunable photonic devices. Adv. Funct. Mater. 23, 2387–2396 (2013)

    Google Scholar 

  49. G.P. Alexander, J.M. Yeomans, Stabilizing the blue phases. Phys. Rev. E 74, 061706 (2006)

    ADS  Google Scholar 

  50. Z. Zheng, D. Shen, P. Huang, Wide blue phase range of chiral nematic liquid crystal doped with bent-shaped molecules. New J. Phys. 12, 113018 (2010)

    ADS  Google Scholar 

  51. H.-C. Jeong, K.V. Le, M.-J. Gim, S.-T. Hur, S.-W. Choi, F. Araoka, K. Ishikawa, H. Takezoe, Transition between widened BPs by light irradiation using photo-active bent-core liquid crystal with chiral dopant. J. Mater. Chem. 22, 4627–4630 (2012)

    Google Scholar 

  52. K. Kishikawa, T. Sugiyama, T. Watanabe, S. Aoyagi, M. Kohri, T. Taniguchi, M. Takahashi, S. Kohmoto, Simple and efficient chiral dopants to induce blue phases and their optical purity effects on the physical properties of blue phases. J. Phys. Chem. B 118, 10319–10332 (2014)

    Google Scholar 

  53. W. He, G. Pan, Z. Yang, D. Zhao, G. Niu, W. Huang, X. Yuan, J. Guo, H. Cao, H. Yang, Wide blue phase range in a hydrogen-bonded self-assembled complex of chiral fluoro-substituted benzoic acid and pyridine derivative. Adv. Mater. 21, 2050–2053 (2009)

    Google Scholar 

  54. Y. Li, Y. Cong, H. Chu, B. Zhang, Blue phases induced by rod-shaped hydrogen-bonded supermolecules possessing no chirality or mesomorphic behaviour. J. Mater. Chem. C 2, 1783–1790 (2014)

    Google Scholar 

  55. B.-Y. Zhang, F.-B. Meng, Y.-H. Cong, Optical characterization of polymer liquid crystal cell exhibiting polymer blue phases. Opt. Express 15, 10175–10181 (2007)

    ADS  Google Scholar 

  56. C.-T. Wang, H.-C. Jau, T.-H. Lin, Bistable cholesteric-blue phase liquid crystal using thermal hysteresis. Opt. Mater. 34, 248–250 (2011)

    ADS  Google Scholar 

  57. C.-H. Lee, C.-W. Wu, C.-W. Chen, H.-C. Jau, T.-H. Lin, Polarization-independent bistable light valve in blue phase liquid crystal filled photonic crystal fiber. Appl. Opt. 52, 4849–4853 (2013)

    ADS  Google Scholar 

  58. A. Yoshizawa, Material design for blue phase liquid crystals and their electro-optical effects. RSC Adv. 3, 25475–25497 (2013)

    Google Scholar 

  59. E. Grelet, Liquid crystals exhibiting a double geometrical frustration: the smectic blue phases. Mol. Cryst. Liq. Cryst. 412, 37–47 (2004)

    Google Scholar 

  60. A. Hauser, M. Thieme, A. Saupe, G. Heppke, D. Kruerke, Surface-imaging of frozen blue phases in a discotic liquid crystal with atomic force microscopy. J. Mater. Chem. 7, 2223–2229 (1997)

    Google Scholar 

  61. J. Buey, P. Espinet, H.-S. Kitzerow, J. Strauss, Metallomesogens presenting blue phases in a glassy state and in metallomesogen/nematic mixtures, Chem. Comm. 5, 441–442 (1999)

    Google Scholar 

  62. Y. Ogawa, J.-I. Fukuda, H. Yoshida, M. Ozaki, Finite-difference time-domain analysis of cholesteric blue phase II using the Landau-de Gennes tensor order parameter model. Opt. Lett. 38, 3380–3383 (2013)

    Google Scholar 

  63. S. Meiboom, M. Sammon, Structure of the blue phase of a cholesteric liquid crystal. Phys. Rev. Lett. 44, 882–885 (1980)

    ADS  Google Scholar 

  64. R.M. Hornreich, S. Shtrikman, Optical selection rules and structures of cholesteric blue phases. Phys. Lett. A 82, 345–349 (1981)

    ADS  Google Scholar 

  65. V.A. Kizel’, V.V. Prokhorov, Structure of the blue phases of cholesteric liquid crystals. Zh. Eksp. Teor. Fiz 87, 450–466 (1984)

    Google Scholar 

  66. F. Porsch, H. Stegemeyer, The effect of an electric field on the selective reflection bands of liquid crystalline blue phases. Chem. Phys. Lett. 125, 319–323 (1986)

    ADS  Google Scholar 

  67. R. Barbet-Massin, P. Pierański, Blue phase one: first optical measurements of the order parameter. J. Phys. Lett. 45, 799–806 (1984)

    Google Scholar 

  68. J.W. Gorman, P.P. Crooker, Mueller-matrix measurements in a two-component blue-phase mixture. Phys. Rev. A 31, 910–913 (1985)

    ADS  Google Scholar 

  69. B. Jérôme, P. Pierański, Kossel diagrams of blue phases. Liq. Cryst. 5, 799–812 (1989)

    Google Scholar 

  70. R.J. Miller, H.F. Gleeson, Lattice parameter measurements from the Kossel diagrams of the cubic liquid crystal blue phases. J. Phys. II France 6, 909–922 (1996)

    Google Scholar 

  71. G. Heppke, B. Jérôme, H.-S. Kitzerow, P. Pieranski, Electrostriction of BPI and BPII for blue phase systems with negative dielectric anisotropy. J. Phys. France 50, 549–562 (1989)

    Google Scholar 

  72. G. Heppke, B. Jérôme, H.-S. Kitzerow, P. Pieranski, Electrostriction of the cholesteric blue phases BPI and BPII in mixtures with positive dielectric anisotropy. J. Phys. France 50, 2991–2998 (1989)

    Google Scholar 

  73. M.J. Costello, S. Meiboom, M. Sammon, Electron microscopy of a cholesteric liquid crystal and its blue phase. Phys. Rev. A 29, 2957–2959 (1984)

    ADS  Google Scholar 

  74. K. Higashiguchi, K. Yasui, H. Kikuchi, Direct observation of polymer-stabilized blue Phase I structure with confocal laser scanning microscope. J. Am. Chem. Soc. 130, 6326–6327 (2008)

    Google Scholar 

  75. R. Barbet-Massin, P.E. Cladis, P. Pieranski, Crystal habit of liquid-crystal blue phase I. Phys. Rev. A 30, 1161–1164 (1984)

    ADS  Google Scholar 

  76. B. Pansu, E. Dubois-Violette, Blue phases: experimental survey and geometrical approach. J. Phys. Colloques 51, C7-281-C287-296 (1990)

    Google Scholar 

  77. P. Pierański, P.E. Cladis, T. Garel, R. Barbet-Massin, Orientation of crystals of blue phases by electric fields. J. Phys. France 47, 139–143 (1986)

    Google Scholar 

  78. C.-T. Wang, H.-Y. Liu, H.-H. Cheng, T.-H. Lin, Bistable effect in the liquid crystal blue phase. Appl. Phys. Lett. 96, 041106 (2010)

    ADS  Google Scholar 

  79. P. Nayek, H. Jeong, H.R. Park, S.-W. Kang, S.H. Lee, H.S. Park, H.J. Lee, H.S. Kim, Tailoring monodomain in blue phase liquid crystal by surface pinning effect. Appl. Phys. Express 5, 051701 (2012)

    ADS  Google Scholar 

  80. T.-H. Lin, Y. Li, C.-T. Wang, H.-C. Jau, C.-W. Chen, C.-C. Li, H.K. Bisoyi, T.J. Bunning, Q. Li, Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film. Adv. Mater. 25, 5050–5054 (2013)

    Google Scholar 

  81. S.-I. Yamamoto, Y. Haseba, H. Higuchi, Y. Okumura, H. Kikuchi, Lattice plane control of liquid crystal blue phase. Liq. Cryst. 40, 639–645 (2013)

    Google Scholar 

  82. H.S. Kitzerow, P.P. Crooker, S.L. Kwok, J. Xu, G. Heppke, Dynamics of blue-phase selective reflections in an electric field. Phys. Rev. A 42, 3442–3448 (1990)

    ADS  Google Scholar 

  83. V.E. Dmitrienko, Electro-optic effects in blue phases. Liq. Cryst. 5, 847–851 (1989)

    Google Scholar 

  84. D. Lubin, R.M. Hornreich, Effect of a weak electric field on the cubic blue phases of cholesteric liquid crystals. Phys. Rev. A 36, 849–857 (1987)

    ADS  Google Scholar 

  85. Y. Chen, S.-T. Wu, Electric field-induced monodomain blue phase liquid crystals. Appl. Phys. Lett. 102, 171110 (2013)

    ADS  Google Scholar 

  86. P. Pierański, P.E. Cladis, R. Barbet-Massin, Shapes of blue phase crystals grown in electric fields. Liq. Cryst. 5, 829–838 (1989)

    Google Scholar 

  87. C.-W. Chen, H.-C. Jau, C.-H. Lee, C.-C. Li, C.-T. Hou, C.-W. Wu, T.-H. Lin, I.C. Khoo, Temperature dependence of refractive index in blue phase liquid crystals. Opt. Mater. Express 3, 527–532 (2013)

    Google Scholar 

  88. D. Demus, H.G. Hahn, F. Kuschel, Density measurements in cholesteryl myristate. Mol. Cryst. Liq. Cryst. 44, 61–70 (1978)

    Google Scholar 

  89. R.N. Kleiman, D.J. Bishop, R. Pindak, P. Taborek, Shear modulus and specific heat of the liquid-crystal blue phases. Phys. Rev. Lett. 53, 2137–2140 (1984)

    ADS  Google Scholar 

  90. D. Armitage, R.J. Cox, Liquid crystal blue phase to isotropic transition and electric field response. Mol. Cryst. Liq. Cryst. 64, 41–50 (1980)

    Google Scholar 

  91. S.-C. Chen, P.-C. Wu, W. Lee, Dielectric and phase behaviors of blue-phase liquid crystals. Opt. Mater. Express 4, 2392–2400 (2014)

    Google Scholar 

  92. V. Belyakov, E. Demikhov, V. Dmitrienko, V. Dolganov, Optical activity, transmission spectra, and structure of blue phases of liquid crystals. Zh. Eksp. Teor. Fiz 89, 2035–2051 (1985)

    Google Scholar 

  93. H. Choi, H. Higuchi, H. Kikuchi, Electrooptic response of liquid crystalline blue phases with different chiral pitches. Soft Matter 7, 4252–4256 (2011)

    ADS  Google Scholar 

  94. P. Pollmann, E. Voss, High pressure optical studies of the chirality and phase behaviour of liquid crystalline blue phases. Liq. Cryst. 23, 299–307 (1997)

    Google Scholar 

  95. H.S. Kitzerow, The effect of electric fields on blue phases. Mol. Cryst. Liq. Cryst. 202, 51–83 (1991)

    Google Scholar 

  96. A. Chanishvili, G. Chilaya, G. Petriashvili, P.J. Collings, Trans-cis isomerization and the blue phases. Phys. Rev. E 71, 051705 (2005)

    ADS  Google Scholar 

  97. P.R. Gerber, Electro-optical effects of a small-pitch blue-phase system. Mol. Cryst. Liq. Cryst. 116, 197–206 (1985)

    Google Scholar 

  98. H. Yoshida, S. Yabu, H. Tone, Y. Kawata, H. Kikuchi, M. Ozaki, Secondary electro-optic effect in liquid crystalline cholesteric blue phases. Opt. Mater. Express 4, 960–968 (2014)

    Google Scholar 

  99. G. Heppke, M. Krumrey, F. Oestreicher, Observation of electro-optical effects in blue phase systems. Mol. Cryst. Liq. Cryst. 99, 99–105 (1983)

    Google Scholar 

  100. Y. Ogawa, J.-I. Fukuda, H. Yoshida, M. Ozaki, Photonic band structure and transmission analysis of cholesteric blue phase II: electrostriction in the [100] direction. Opt. Express 22, 3766–3772 (2014)

    ADS  Google Scholar 

  101. M. Żelazna, L. Longa, H.R. Trebin, H. Stark, Electrostriction tensor of the cubic blue phases: the role of amplitudes. Phys. Rev. E 57, 6711–6716 (1998)

    ADS  Google Scholar 

  102. D.K. Yang, P.P. Crooker, Blue phase III of chiral liquid crystals in an electric field. Phys. Rev. A 37, 4001–4005 (1988)

    ADS  Google Scholar 

  103. F. Porsch, H. Stegemeyer, The influence of chirality and dielectric anisotropy on the voltage-temperature phase diagram of blue-phase systems. Liq. Cryst. 5, 791–798 (1989)

    Google Scholar 

  104. J.-D. Lin, Y.-M. Lin, T.-S. Mo, C.-R. Lee, Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye-doped blue phase with a low-concentration azobenzene liquid crystal. Opt. Express 22, 9171–9181 (2014)

    ADS  Google Scholar 

  105. H.-Y. Liu, C.-T. Wang, C.-Y. Hsu, T.-H. Lin, J.-H. Liu, Optically tuneable blue phase photonic band gaps. Appl. Phys. Lett. 96, 121103 (2010)

    ADS  Google Scholar 

  106. X. Chen, L. Wang, C. Li, J. Xiao, H. Ding, X. Liu, X. Zhang, W. He, H. Yang, Light-controllable reflection wavelength of blue phase liquid crystals doped with azobenzene-dimers. Chem. Comm. 49, 10097–10099 (2013)

    Google Scholar 

  107. O. Jin, D. Fu, J. Wei, H. Yang, J. Guo, Light-induced wide range color switching of liquid crystal blue phase doped with hydrogen-bonded chiral azobenzene switches. RSC Adv. 4, 28597–28600 (2014)

    Google Scholar 

  108. R.K. Vijayaraghavan, S. Abraham, D.S.S. Rao, S.K. Prasad, S. Das, Light induced generation of stable blue phase in photoresponsive diphenylbutadiene based mesogen. Chem Comm. 46, 2796–2798 (2010)

    Google Scholar 

  109. P. Etchegoin, Blue phases of cholesteric liquid crystals as thermotropic photonic crystals. Phys. Rev. E 62, 1435–1437 (2000)

    ADS  Google Scholar 

  110. W. Cao, A. Munoz, P. Palffy-Muhoray, B. Taheri, Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II. Nat. Mater. 1, 111–113 (2002)

    ADS  Google Scholar 

  111. A. Mazzulla, G. Petriashvili, M.A. Matranga, M.P. De Santo, R. Barberi, Thermal and electrical laser tuning in liquid crystal blue phase I. Soft Matter 8, 4882–4885 (2012)

    ADS  Google Scholar 

  112. C.-W. Chen, H.-C. Jau, C.-T. Wang, C.-H. Lee, I.C. Khoo, T.-H. Lin, Random lasing in blue phase liquid crystals. Opt. Express 20, 23978–23984 (2012)

    ADS  Google Scholar 

  113. C.-H. Lin, Y.-Y. Wang, C.-W. Hsieh, Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals. Opt. Lett. 36, 502–504 (2011)

    ADS  Google Scholar 

  114. Y.-T. Lin, H.-C. Jau, T.-H. Lin, Polarization-independent rapidly responding phase grating based on hybrid blue phase liquid crystal. J. Appl. Phys. 113, 063103 (2013)

    ADS  Google Scholar 

  115. S.-J. Ge, W. Ji, G.-X. Cui, B.-Y. Wei, W. Hu, Y.-Q. Lu, Fast switchable optical vortex generator based on blue phase liquid crystal fork grating. Opt. Mater. Express 4, 2535–2541 (2014)

    Google Scholar 

  116. S.-H. Lin, L.-S. Huang, C.-H. Lin, C.-T. Kuo, Polarization-independent and fast tunable microlens array based on blue phase liquid crystals. Opt. Express 22, 925–930 (2014)

    ADS  Google Scholar 

  117. Y.-H. Chen, C.-T. Wang, C.-P. Yu, T.-H. Lin, Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time. Opt. Express 19, 25441–25446 (2011)

    ADS  Google Scholar 

  118. C.-T. Wang, Y.-C. Li, J.-H. Yu, C.Y. Wang, C.-W. Tseng, H.-C. Jau, Y.-J. Chen, T.-H. Lin, Electrically tunable high Q-factor micro-ring resonator based on blue phase liquid crystal cladding. Opt. Express 22, 17776–17781 (2014)

    ADS  Google Scholar 

  119. G. Zhu, B.-Y. Wei, L.-Y. Shi, X.-W. Lin, W. Hu, Z.-D. Huang, Y.-Q. Lu, A fast response variable optical attenuator based on blue phase liquid crystal. Opt. Express 21, 5332–5337 (2013)

    ADS  Google Scholar 

  120. H.-C. Cheng, J. Yan, T. Ishinabe, N. Sugiura, C.-Y. Liu, T.-H. Huang, C.-Y. Tsai, C.-H. Lin, S.-T. Wu, Blue-phase liquid crystal displays with vertical field switching, display technology. J. Display Technol. 8, 98–103 (2012)

    ADS  Google Scholar 

  121. H. Lee, H.-J. Park, O.-J. Kwon, S.J. Yun, J.H. Park, S. Hong, S.-T. Shin, The world’s first blue phase liquid crystal display. SID Int. Symp. Dig. Tec. 42, 121–124 (2011)

    Google Scholar 

  122. J. Yan, M. Jiao, L. Rao, S.-T. Wu, Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite. Opt. Express 18, 11450–11455 (2010)

    ADS  Google Scholar 

  123. S.-W. Choi, S.-I. Yamamoto, Y. Haseba, H. Higuchi, H. Kikuchi, Optically isotropic-nanostructured liquid crystal composite with high Kerr constant. Appl. Phys. Lett. 92, 043119 (2008)

    ADS  Google Scholar 

  124. K.-M. Chen, S. Gauza, H. Xianyu, S.-T. Wu, Hysteresis effects in blue-phase liquid crystals. J. Display Technol. 6, 318–322 (2010)

    ADS  Google Scholar 

  125. C.-Y. Fan, H.-C. Jau, T.-H. Lin, F.C. Yu, T.-H. Huang, C. Liu, N. Sugiura, Influence of polymerization temperature on hysteresis and residual birefringence of polymer stabilized blue phase LCs. J. Display Technol. 7, 615–618 (2011)

    ADS  Google Scholar 

  126. J. Yan, S.-T. Wu, Effect of polymer concentration and composition on blue phase liquid crystals. J. Display Technol. 7, 490–493 (2011)

    ADS  Google Scholar 

  127. Y. Chen, J. Yan, J. Sun, S.-T. Wu, X. Liang, S.-H. Liu, P.-J. Hsieh, K.-L. Cheng, J.-W. Shiu, A microsecond-response polymer-stabilized blue phase liquid crystal. Appl. Phys. Lett. 99, 201105 (2011)

    ADS  Google Scholar 

  128. P. Nayek, H. Jeong, S.-W. Kang, S.H. Lee, H.-S. Park, H.J. Lee, H.S. Kim, G.-D. Lee, Effect of the grain size on hysteresis of liquid-crystalline blue phase I. J. Soc. Inf. Display 20, 318–325 (2012)

    Google Scholar 

  129. Y. Chen, D. Xu, S.-T. Wu, S.-I. Yamamoto, Y. Haseba, A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal. Appl. Phys. Lett. 102, 141116 (2013)

    ADS  Google Scholar 

  130. Y. Chen, J. Yan, M. Schadt, S.-H. Liu, K.-L. Cheng, J.-W. Shiu, S.-T. Wu, Diluter effects on polymer-stabilized blue phase liquid crystals. J. Display Technol. 9, 592–597 (2013)

    ADS  Google Scholar 

  131. Y. Liu, Y.-F. Lan, H. Zhang, R. Zhu, D. Xu, C.-Y. Tsai, J.-K. Lu, N. Sugiura, Y.-C. Lin, S.-T. Wu, Optical rotatory power of polymer-stabilized blue phase liquid crystals. Appl. Phys. Lett. 102, 131102 (2013)

    ADS  Google Scholar 

  132. J. Yan, Z. Luo, S.-T. Wu, J.-W. Shiu, Y.-C. Lai, K.-L. Cheng, S.-H. Liu, P.-J. Hsieh, Y.-C. Tsai, Low voltage and high contrast blue phase liquid crystal with red-shifted Bragg reflection. Appl. Phys. Lett. 102, 011113 (2013)

    ADS  Google Scholar 

  133. L. Rao, J. Yan, S.-T. Wu, Prospects of emerging polymer-stabilized blue-phase liquid-crystal displays. J. Soc. Inf. Display 18, 954–959 (2010)

    Google Scholar 

  134. S. Yoon, M. Kim, M. Su Kim, B. Gyun Kang, M.-K. Kim, A. Kumar Srivastava, S. Hee Lee, Z. Ge, L. Rao, S. Gauza, S.-T. Wu, Optimisation of electrode structure to improve the electro-optic characteristics of liquid crystal display based on the Kerr effect. Liq. Cryst 37, 201–208 (2010)

    Google Scholar 

  135. M. Jiao, Y. Li, S.-T. Wu, Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes. Appl. Phys. Lett. 96, 011102 (2010)

    ADS  Google Scholar 

  136. H.-C. Jau, P.-H. Liao, H.-W. Li, H.-K. Hsu, C.-H. Chen, C.-C. Wang, T.-H. Lin, Improvement of electro-optical properties of PSBP LCD using a double-sided IPS electrode. J. Soc. Inf. Display 20, 351–353 (2012)

    Google Scholar 

  137. S. He, J.-H. Lee, H.-C. Cheng, J. Yan, S.-T. Wu, Fast-response blue-phase liquid crystal for color-sequential projection displays. J. Display Technol. 8, 352–356 (2012)

    ADS  Google Scholar 

  138. G. Nordendorf, A. Hoischen, J. Schmidtke, D. Wilkes, H.S. Kitzerow, Polymer-stabilized blue phases: promising mesophases for a new generation of liquid crystal displays. Polym. Adv. Technol. 25, 1195–1207 (2014)

    Google Scholar 

  139. D.-K. Yang, S.-T. Wu, in Fundamentals of Liquid Crystal Devices. Polymer-Stabilized Blue Phase Liquid Crystals (Wiley, Hoboken, 2014) pp. 477–512

    Google Scholar 

  140. J. Xiang, O.D. Lavrentovich, Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching. Appl. Phys. Lett. 103, 051112 (2013)

    ADS  Google Scholar 

  141. H.-C. Jau, W.-M. Lai, C.-W. Chen, Y.-T. Lin, H.-K. Hsu, C.-H. Chen, C.-C. Wang, T.-H. Lin, Study of electro-optical properties of templated blue phase liquid crystals. Opt. Mater. Express 3, 1516–1522 (2013)

    Google Scholar 

  142. Y. Jin, C. Yuan, W. Shin-Tson, S. Xiaolong, Figure of merit of polymer-stabilized blue phase liquid crystals. J. Display Technol. 9, 24–29 (2013)

    ADS  Google Scholar 

  143. W. De Cort, J. Beeckman, T. Claes, K. Neyts, R. Baets, Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Opt. Lett. 36, 3876–3878 (2011)

    ADS  Google Scholar 

  144. R. Mayén-Mondragón, J.M. Yáñez-Limón, Study of blue phases transition kinetics by thermal lens spectroscopy in cholesteryl nonanoate. Rev. Sci. Instrum. 77, 044903 (2006)

    ADS  Google Scholar 

  145. I.C. Khoo, T.-H. Lin, Nonlinear optical grating diffraction in dye-doped blue-phase liquid crystals. Opt. Lett. 37, 3225–3227 (2012)

    ADS  Google Scholar 

  146. I.C. Khoo, DC-field-assisted grating formation and nonlinear diffractions in methyl-red dye-doped blue phase liquid crystals. Opt. Lett. 40, 60–63 (2015)

    ADS  Google Scholar 

  147. J. Ptasinski, I.-C. Khoo, Y. Fainman, Enhanced optical tuning of modified-geometry resonators clad in blue phase liquid crystals. Opt. Lett. 39, 5435–5438 (2014)

    ADS  Google Scholar 

  148. I.C. Khoo, C.-W. Chen, K.L. Hong, T.-H. Lin, S. Zhao, Nonlinear optics of nematic and blue phase liquid crystals. Mol. Cryst. Liq. Cryst. 594, 31–41 (2014)

    Google Scholar 

  149. I.C. Khoo, K.L. Hong, S. Zhao, D. Ma, T.-H. Lin, Blue-phase liquid crystal cored optical fiber array with photonic bandgaps and nonlinear transmission properties. Opt. Express 21, 4319–4327 (2013)

    ADS  Google Scholar 

  150. Y. Wang, Q. Li, Light-driven chiral molecular switches or motors in liquid crystals. Adv. Mater. 24, 1926–1945 (2012)

    Google Scholar 

  151. H.K. Bisoyi, Q. Li, Light-directing chiral liquid crystal nanostructures: from 1D to 3D. Acc. Chem. Res. 47, 3184–3195 (2014)

    Google Scholar 

  152. Q. Li (ed.), Nanoscience with Liquid Crystals: From Self-organized Nanostructures to Applications (Springer, Heidelberg, 2014)

    Google Scholar 

  153. Q. Li (ed.), Liquid Crystals Beyond Displays: Physics, Chemistry, and Applications (Wiley, Hoboken, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tsung-Hsien Lin or Quan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lin, TH., Chen, CW., Li, Q. (2015). Self-Organized 3D Photonic Superstructure: Blue Phase Liquid Crystal. In: Li, Q. (eds) Anisotropic Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18293-3_9

Download citation

Publish with us

Policies and ethics