Skip to main content

Directed Assembly and Self-organization of Metal Nanoparticles in Two and Three Dimensions

  • Chapter
  • First Online:
Anisotropic Nanomaterials

Part of the book series: NanoScience and Technology ((NANO))

  • 2198 Accesses

Abstract

Properties of metals and other compounds change in comparison to their bulk materials when they are prepared as sufficiently small particles, usually in the 1–50 nm range. A myriad of applications for these nanoparticles have been conceived and tested and their presence in consumer products is already ubiquitous. It was established right from the beginning that the properties of materials containing nanoparticles not only depend on their size, shape, and composition but also their spatial arrangement. Most prominent are predictable changes to their optical properties when nanoparticles are positioned in ordered arrays and sufficiently close to permit electronic interactions. This chapter describes the recent advancements in the arrangement of metal nanoparticles into defined structures of two- and three-dimensional order by the Langmuir-Blodgett technique, layer-by-layer deposition, and the self-organization of liquid crystalline and amphiphilic metal nanoparticles. The large volume of work on the (directed) self-assembly of nanoparticles is just briefly presented in the introduction as it has been extensively and comprehensively reviewed by others. While the Langmuir-Blodgett technique can generate monolayer and multilayer materials, the other two techniques (layer-by-layer deposition and the self-organization) are predominantly applied to the preparation of three-dimensionally ordered materials. Discussed in great detail is how the purity and size-distribution of employed metal nanoparticles and the structure of their protective layer(s) affect their ability to generate two- and three-dimensionally ordered arrangements of high quality and persistence length by any of the three techniques. Processing conditions are described in less detail because they do not differ from those used for molecular materials, although they are equally important to the preparation of structures of long-range order. Finally, possible applications and properties of materials prepared by the Langmuir-Blodgett technique, Layer-by-layer deposition, and self-organization are described if deemed important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzán, Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010)

    Google Scholar 

  2. A. Boker, J. He, T. Emrick, T.P. Russell, Self-assembly of nanoparticles at interfaces. Soft Matter 3, 1231–1248 (2007)

    ADS  Google Scholar 

  3. S. Kinge, M. Crego-Calama, D.N. Reinhoudt, Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 9, 20–42 (2008)

    Google Scholar 

  4. Z. Nie, A. Petukhova, E. Kumacheva, Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5, 15–25 (2010)

    ADS  Google Scholar 

  5. A. Klinkova, R.M. Choueiri, E. Kumacheva, Self-assembled plasmonic nanostructures. Chem. Soc. Rev. 43, 3976–3991 (2014)

    Google Scholar 

  6. K. Ariga, Q. Ji, J.P. Hill, Y. Bando, M. Aono, Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Mater. 4, 17 (2012)

    Google Scholar 

  7. W. Lewandowski, K. Jatczak, D. Pociecha, J. Mieczkowski, Control of gold nanoparticle superlattice properties via mesogenic ligand architecture. Langmuir 29, 3404–3410 (2013)

    Google Scholar 

  8. X.G. Peng, Y. Zhang, J. Yang, B.S. Zou, L.Z. Xiao, T.J. Li, Formation of nanoparticulate Fe2O3-stearate multilayer through the Langmuir-Blodgett method. J. Phys. Chem. 96, 3412–3415 (1992)

    Google Scholar 

  9. M. Sastry, K.S. Mayya, V. Patil, Facile surface modification of colloidal particles using bilayer surfactant assemblies: a new strategy for electrostatic complexation in Langmuir-Blodgett films. Langmuir 14, 5921–5928 (1998)

    Google Scholar 

  10. K. Gmucova, M. Weis, V. Nadazdy, E. Majkova, Orientation ordering of nanoparticle Ag/Co cores controlled by electric and magnetic fields. ChemPhysChem 9, 1036–1039 (2008)

    Google Scholar 

  11. H. Watanabe, M. Nishimura, Y. Fukui, K. Fujimoto, Development of a particle nanoimprinting technique by core-shell particles. Langmuir 30, 1630–1635 (2014)

    Google Scholar 

  12. Y.C. Tian, J.H. Fendler, Langmuir-Blodgett film formation from fluorescence-activated, surfactant-capped, size-selected CdS nanoparticles spread on water surfaces. Chem. Mater. 8, 969–974 (1996)

    Google Scholar 

  13. S.A. Iakovenko, A.S. Trifonov, M. Giersig, A. Mamedov, D.K. Nagesha, V.V. Hanin, E.C. Soldatov, N.A. Kotov, One- and two-dimensional arrays of magnetic nanoparticles by the Langmuir-Blodgett technique. Adv. Mater. 11, 388–392 (1999)

    Google Scholar 

  14. A.R. Tao, J. Huang, P. Yang, Langmuir-Blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 41, 1662–1673 (2008)

    Google Scholar 

  15. K. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience (Wiley, 2002)

    Google Scholar 

  16. A.R. Tao, Nanocrystal assembly for bottom-up plasmonic materials and surface-enhanced Raman spectroscopy (SERS) sensing. Pure Appl. Chem. 81, 61–71 (2009)

    Google Scholar 

  17. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005)

    Google Scholar 

  18. J.H. Fendler, Self-assembled nanostructured materials. Chem. Mater. 8, 1616–1624 (1996)

    Google Scholar 

  19. E. Pohjalainen, M. Pohjakallio, C. Johans, K. Kontturi, J.V.I. Timonen, O. Ikkala, R.H.A. Ras, T. Viitala, M.T. Heino, E.T. Seppala, Cobalt nanoparticle Langmuir-Schaefer films on ethylene glycol subphase. Langmuir 26, 13937–13943 (2010)

    Google Scholar 

  20. R.K. Gupta, K.A. Suresh, S. Kumar, Monolayer of amphiphilic functionalized gold nanoparticles at an air-water interface. Phys. Rev. E 78, 032601 (2008)

    ADS  Google Scholar 

  21. A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami, E. Duguet, Design and synthesis of Janus micro-and nanoparticles. J. Mater. Chem. 15, 3745–3760 (2005)

    Google Scholar 

  22. H. Zhang, Y. Liu, D. Yao, B. Yang, Hybridization of inorganic nanoparticles and polymers to create regular and reversible self-assembly architectures. Chem. Soc. Rev. 41, 6066–6088 (2012)

    Google Scholar 

  23. A. Swami, A. Kumar, P.R. Selvakannan, S. Mandal, M. Sastry, Langmuir-Blodgett films of laurylamine-modified hydrophobic gold nanoparticles organized at the air-water interface. J. Colloid Interface Sci. 260, 367–373 (2003)

    Google Scholar 

  24. V. Aleksandrovic, D. Greshnykh, I. Randjelovic, A. Froemsdorf, A. Kornowski, S.V. Roth, C. Klinke, H. Weller, Preparation and electrical properties of cobalt-platinum nanoparticle monolayers deposited by the Langmuir-Blodgett technique. ACS Nano 2, 1123–1130 (2008)

    Google Scholar 

  25. J.Y. Kim, S. Raja, F. Stellacci, Evolution of langmuir film of nanoparticles through successive compression cycles. small 7(17), 2526–2532 (2011)

    Google Scholar 

  26. H. Song, F. Kim, S. Connor, G.A. Somorjai, P.D. Yang, Pt nanocrystals: shape control and Langmuir-Blodgett monolayer formation. J. Phys. Chem. B 109, 188–193 (2005)

    Google Scholar 

  27. M.A. Mahmoud, M.A. El-Sayed, Comparative study of the assemblies and the resulting plasmon fields of Langmuir-Blodgett assembled monolayers of silver nanocubes and gold nanocages. J. Phys. Chem. C 112, 14618–14625 (2008)

    Google Scholar 

  28. P.J.G. Goulet, D.S. dos Santos, R.A. Alvarez-Puebla, O.N. Oliveira, R.F. Aroca, Surface-enhanced Raman scattering on dendrimer/metallic nanoparticle layer-by-layer film substrates. Langmuir 21, 5576–5581 (2005)

    Google Scholar 

  29. P.J.G. Goulet, N.P.W. Pieczonka, R.F. Aroca, Mapping single-molecule SERRS from Langmuir-Blodgett monolayers, on nanostructured silver island films. J. Raman Spectrosc. 36, 574–580 (2005)

    ADS  Google Scholar 

  30. Y. Lu, G.L. Liu, L.P. Lee, High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett. 5, 5–9 (2005)

    ADS  Google Scholar 

  31. M.A. Mahmoud, C.E. Tabor, M.A. El-Sayed, Surface-enhanced Raman scattering enhancement by aggregated silver nanocube monolayers assembled by the Langmuir-Blodgett technique at different surface pressures. J. Phys. Chem. C 113, 5493–5501 (2009)

    Google Scholar 

  32. X. Chen, X. Yang, W. Fu, M. Xu, H. Chen, Enhanced performance of polymer solar cells with a monolayer of assembled gold nanoparticle films fabricated by Langmuir-Blodgett technique. Mater. Sci. Eng., B 178, 53–59 (2013)

    Google Scholar 

  33. J.Z. James, D. Lucas, C.P. Koshland, Gold nanoparticle films as sensitive and reusable elemental mercury sensors. Environ. Sci. Technol. Lett. 46, 9557–9562 (2012)

    ADS  Google Scholar 

  34. C. Medina-Plaza, C. Garcia-Cabezon, C. Garcia-Hernandez, C. Bramorski, Y. Blanco-Val, F. Martin-Pedrosa, T. Kawai, J.A. de Saja, M.L. Rodriguez-Mendez, Analysis of organic acids and phenols of interest in the wine industry using Langmuir-Blodgett films based on functionalized nanoparticles. Anal. Chim. Acta 853, 572–578 (2015)

    Google Scholar 

  35. J.Y. Park, Y. Zhang, M. Grass, T. Zhang, G.A. Somorjai, Tuning of catalytic CO oxidation by changing composition of Rh-Pt bimetallic nanoparticles. Nano Lett. 8, 673–677 (2008)

    ADS  Google Scholar 

  36. Y.W. Zhang, M.E. Grass, W.Y. Huang, G.A. Somorjai, Seedless polyol synthesis and CO oxidation activity of monodisperse (111)- and (100)-oriented rhodium nanocrystals in sub-10 nm sizes. Langmuir 26, 16463–16468 (2010)

    Google Scholar 

  37. K. Nørgaard, M.J. Weygand, K. Kjaer, M. Brust, T. Bjørnholm, Adaptive chemistry of bifunctional gold nanoparticles at the air/water interface. A synchrotron X-ray study of giant amphiphiles. Faraday Discuss. 125, 221 (2004)

    ADS  Google Scholar 

  38. K.D. Comeau, M.V. Meli, Effect of alkanethiol chain length on gold nanoparticle monolayers at the air-water interface. Langmuir 28, 377–381 (2012)

    Google Scholar 

  39. T. Matsumoto, P. Nickut, T. Sawada, H. Tsunoyama, K. Watanabe, T. Tsukuda, K. Al-Shamery, Y. Matsumoto, Deposition and fabrication of alkanethiolate gold nanocluster films on TiO2(110) and the effects of plasma etching. Surf. Sci. 601, 5121–5126 (2007)

    ADS  Google Scholar 

  40. J.R. Heath, C.M. Knobler, D.V. Leff, Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant. J. Phys. Chem. B 101, 189–197 (1997)

    Google Scholar 

  41. B.P. Gagnon, M.V. Meli, Effects on the self-assembly of n-alkane/gold nanoparticle mixtures spread at the air-water interface. Langmuir 30, 179–185 (2014)

    Google Scholar 

  42. T.A. Sanders II, M.N. Sauced, J.A. Dahl, Langmuir isotherms of flexible, covalently crosslinked gold nanoparticle networks: increased collapse pressures of membrane-like structures. Mater. Lett. 120, 159–162 (2014)

    Google Scholar 

  43. C.Y. Lau, H. Duan, F. Wang, C.B. He, H.Y. Low, J.K.W. Yang, Enhanced ordering in gold nanoparticles self-assembly through excess free ligands. Langmuir 27, 3355–3360 (2011)

    Google Scholar 

  44. S.J. Lee, S.W. Han, H.J. Choi, K. Kim, Phase behavior of organic-inorganic crystal—temperature-dependent diffuse reflectance infrared spectroscopy of silver stearate. Eur. Phys. J. D 16, 293–296 (2001)

    ADS  Google Scholar 

  45. H. Perez, R.M.L. de Sousa, J.P. Pradeau, P.A. Albouy, Elaboration and electrical characterization of Langmuir-Blodgett films of 4-mercaptoaniline functionalized platinum nanoparticles. Chem. Mater. 13, 1512–1517 (2001)

    Google Scholar 

  46. M. Sastry, M. Rao, K.N. Ganesh, Electrostatic assembly of nanoparticles and biomacromolecules. Acc. Chem. Res. 35, 847–855 (2002)

    Google Scholar 

  47. S. Datta, J. Biswas, S. Bhattacharya, How does spacer length of imidazolium gemini surfactants control the fabrication of 2D-Langmuir films of silver-nanoparticles at the air-water interface. J. Colloid Interface Sci. 430, 85–92 (2014)

    Google Scholar 

  48. V. Sashuk, R. Holyst, T. Wojciechowski, M. Fialkowski, Close-packed monolayers of charged Janus-type nanoparticles at the air-water interface. J. Colloid Interface Sci. 375, 180–186 (2012)

    Google Scholar 

  49. M. Benkovicova, K. Vegsoe, P. Siffalovic, M. Jergel, E. Majkova, S. Luby, A. Satka, Preparation of sterically stabilized gold nanoparticles for plasmonic applications. Chem. Pap. 67, 1225–1230 (2013)

    Google Scholar 

  50. Y. Zhang, M.E. Grass, S.E. Habas, F. Tao, T. Zhang, P. Yang, G.A. Somorjai, One-step polyol synthesis and langmuir-blodgett monolayer formation of size-tunable monodisperse rhodium nanocrystals with catalytically active (111) surface structures. J. Phys. Chem. C 111, 12243–12253 (2007)

    Google Scholar 

  51. K.L. Genson, J. Holzmueller, C. Jiang, J. Xu, J.D. Gibson, E.R. Zubarev, V.V. Tsukruk, Langmuir-Blodgett monolayers of gold nanoparticles with amphiphilic shells from V-shaped binary polymer arms. Langmuir 22, 7011–7015 (2006)

    Google Scholar 

  52. A. Tao, P. Sinsermsuksakul, P. Yang, Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2, 435–440 (2007)

    ADS  Google Scholar 

  53. E. Bellido, N. Domingo, I. Ojea-Jimenez, D. Ruiz-Molina, Structuration and integration of magnetic nanoparticles on surfaces and devices. Small 8, 1465–1491 (2012)

    Google Scholar 

  54. Y. Wang, M. Yang, B. Xu, Z. Yang, N. Hu, L. Wei, B. Cai, Y. Zhang, Controlled assembly of FePt nanoparticles monolayer on solid substrates. J. Colloid Interface Sci. 417, 100–108 (2014)

    Google Scholar 

  55. M. Wen, E. Kejia, H. Qi, L. Li, J. Chen, Y. Chen, Q. Wu, T. Zhang, Langmuir-Blodgett self-assembly and electrochemical catalytic property of FePt magnetic nano-monolayer. J. Nanopart. Res. 9, 909–917 (2007)

    Google Scholar 

  56. M. Kumar, A. Pathak, M. Singh, M.L. Singla, Fabrication of Langmuir-Blodgett film from polyvinylpyrrolidone stabilized NiCo alloy nanoparticles. Thin Solid Films 519, 1445–1451 (2010)

    ADS  Google Scholar 

  57. S. Kundu, Layer-by-layer assembly of thiol-capped Au nanoparticles on a water surface and their deposition on H-terminated Si(001) by the Langmuir-Blodgett method. Langmuir 27, 3930–3936 (2011)

    Google Scholar 

  58. S. Kundu, J.K. Bal, Reorganization of Au nanoparticle Langmuir-Blodgett films on wet chemically passivated Si(001) surfaces. J. Appl. Phys. 110 (2011)

    Google Scholar 

  59. S. Kundu, K. Das, O. Konovalov, Prolonged reorganization of thiol-capped Au nanoparticles layered structures. AIP Adv. 3 (2013)

    Google Scholar 

  60. M.M. de Villiers, D.P. Otto, S.J. Strydom, Y.M. Lvov, Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv. Drug Delivery Rev. 63, 701–715 (2011)

    Google Scholar 

  61. G. Decher, J.B. Schlenoff (eds.), Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials (Wiley-VCH Verlag GmbH & Co. KGaA, 2012)

    Google Scholar 

  62. A.N. Shipway, E. Katz, I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1, 18–52 (2000)

    Google Scholar 

  63. A.N. Shipway, I. Willner, Nanoparticles as structural and functional units in surface-confined architectures. Chem. Commun. 20, 2035–2045 (2001)

    Google Scholar 

  64. R.K. Iler, Multilayers of colloidal particles. J. Colloid Interface Sci. 21, 569–575 (1966)

    Google Scholar 

  65. J.R. Siqueira Jr, L. Caseli, F.N. Crespilho, V. Zucolotto, O.N. Oliveira Jr, Immobilization of biomolecules on nanostructured films for biosensing. Biosens. Bioelectron. 25, 1254–1263 (2010)

    Google Scholar 

  66. K. Sato, J. Anzai, Dendrimers in layer-by-layer assemblies: synthesis and applications. Molecules 18, 8440–8460 (2013)

    Google Scholar 

  67. J. Schmitt, G. Decher, W.J. Dressick, S.L. Brandow, R.E. Geer, R. Shashidhar, J.M. Calvert, Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure. Adv. Mater. 9, 61–65 (1997)

    Google Scholar 

  68. A.I. Abdelrahman, A.M. Mohammad, T. Okajima, T. Ohsaka, Fabrication and electrochemical application of three-dimensional gold nanoparticles: self-assembly. J. Phys. Chem. B 110, 2798–2803 (2006)

    Google Scholar 

  69. A.I. Abdelrahman, A.M. Mohammad, M.S. El-Deab, T. Okajima, T. Ohsaka, Bisthiol-assisted multilayers’ self-assembly of gold nanoparticles: synthesis, characterization, size control and electrocatalytic applications. Macromol. Symp. 270, 74–81 (2008)

    Google Scholar 

  70. J.F. Hicks, Y. Seok-Shon, R.W. Murray, Layer-by-layer growth of polymer/nanoparticle films containing monolayer-protected gold clusters. Langmuir 18, 2288–2294 (2002)

    Google Scholar 

  71. W. Song, M. Okamura, T. Kondo, K. Uosaki, Sequential layer-by-layer growth of Au nanoclusters protected by a mixed self-assembled monolayer with a polymer binding layer—effects of pH and ionic strength of the polymer solution. J. Electroanal. Chem. 612, 105–111 (2008)

    Google Scholar 

  72. W.B. Zhao, J. Park, A.-M. Caminade, S.-J. Jeong, Y.H. Jang, S.O. Kim, J.-P. Majoral, J. Cho, D.H. Kim, Localized surface plasmon resonance coupling in Au nanoparticles/phosphorus dendrimer multilayer thin films fabricated by layer-by-layer self-assembly method. J. Mater. Chem. 19, 2006–2012 (2009)

    Google Scholar 

  73. B. Peter, S. Kurunczi, D. Patko, I. Lagzi, B. Kowalczyk, Z. Rácz, B.A. Grzybowski, R. Horvath, Label-free in situ optical monitoring of the adsorption of oppositely charged metal nanoparticles. Langmuir 30, 13478–13482 (2014)

    Google Scholar 

  74. S. Kawada, D. Saeki, H. Matsuyama, Development of ultrafiltration membrane by stacking of silver nanoparticles stabilized with oppositely charged polyelectrolytes. Colloids Surf. A 451, 33–37 (2014)

    Google Scholar 

  75. Y. Liu, Y. Wang, R.O. Claus, Layer-by-layer ionic self-assembly of Au colloids into multilayer thin-films with bulk metal conductivity. Chem. Phys. Lett. 298, 315–319 (1998)

    ADS  Google Scholar 

  76. P.J. Rivero, J. Goicoechea, I.R. Matias, F.J. Arregui, A comparative study of two different approaches for the incorporation of silver nanoparticles into layer-by-layer films. Nanoscale Res. Lett. 9, 301–301 (2014)

    ADS  Google Scholar 

  77. Y. Ko, H. Baek, Y. Kim, M. Yoon, J. Cho, Hydrophobic nanoparticle-based nanocomposite films using in situ ligand exchange layer-by-layer assembly and their nonvolatile memory applications. ACS Nano 7, 143–153 (2012)

    Google Scholar 

  78. M. Park, Y. Kim, Y. Ko, S. Cheong, S.W. Ryu, J. Cho, Amphiphilic layer-by-layer assembly overcoming solvent polarity between aqueous and nonpolar media. J. Am. Chem. Soc. 136, 17213–17223 (2014)

    Google Scholar 

  79. N. Krasteva, I. Besnard, B. Guse, R.E. Bauer, K. Müllen, A. Yasuda, T. Vossmeyer, Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications. Nano Lett. 2, 551–555 (2002)

    ADS  Google Scholar 

  80. M.D. Musick, C.D. Keating, M.H. Keefe, M.J. Natan, Stepwise construction of conductive Au colloid multilayers from solution. Chem. Mater. 9, 1499–1501 (1997)

    Google Scholar 

  81. M.D. Musick, C.D. Keating, L.A. Lyon, S.L. Botsko, D.J. Pena, W.D. Holliway, T.M. McEvoy, J.N. Richardson, M.J. Natan, Metal films prepared by stepwise assembly. 2. Construction and characterization of colloidal Au and Ag multilayers. Chem. Mater. 12, 2869–2881 (2000)

    Google Scholar 

  82. T. Baum, D. Bethell, M. Brust, D.J. Schiffrin, Electrochemical charge injection into immobilized nanosized gold particle ensembles: potential modulated transmission and reflectance spectroscopy. Langmuir 15, 866–871 (1999)

    Google Scholar 

  83. M. Brust, R. Etchenique, E.J. Calvo, G.J. Gordillo, The self-assembly of gold and SCd nanoparticle multilayer structures studied by quartz crystal microgravimetry. Chem. Commun. 1949–1950 (1996)

    Google Scholar 

  84. L. Supriya, R.O. Claus, Colloidal Au/linker molecule multilayer films: low-temperature thermal coalescence and resistance changes. Chem. Mater. 17, 4325–4334 (2005)

    Google Scholar 

  85. J. Dhar, S. Patil, Self-assembly and catalytic activity of metal nanoparticles immobilized in polymer membrane prepared via layer-by-layer approach. ACS Appl. Mater. Interfaces 4, 1803–1812 (2012)

    Google Scholar 

  86. H. Li, Z. Li, L. Wu, Y. Zhang, M. Yu, L. Wei, Constructing metal nanoparticle multilayers with polyphenylene dendrimer/gold nanoparticles via “click” chemistry. Langmuir 29, 3943–3949 (2013)

    Google Scholar 

  87. J.W. Goodby, P.J. Collings, T. Kato, C. Tschierske, H. Gleeson, P. Raynes (eds.), Handbook of Liquid Crystals (Wiley-VCH Verlag & Co. KGaA, 2013)

    Google Scholar 

  88. M. Sawamura, K. Kawai, Y. Matsuo, K. Kanie, T. Kato, E. Nakamura, Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals. Nature 419, 702–705 (2002)

    ADS  Google Scholar 

  89. B. Donnio, S. Buathong, I. Bury, D. Guillon, Liquid crystalline dendrimers. Chem. Soc. Rev. 36, 1495–1513 (2007)

    Google Scholar 

  90. G.L. Nealon, R. Greget, C. Dominguez, Z.T. Nagy, D. Guillon, J.-L. Gallani, B. Donnio, Liquid-crystalline nanoparticles: hybrid design and mesophase structures. Beilstein J. Org. Chem. 8, 349–370 (2012)

    Google Scholar 

  91. H.K. Bisoyi, S. Kumar, Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem. Soc. Rev. 40, 306–319 (2011)

    Google Scholar 

  92. J. van Herrikhuyzen, G. Portale, J.C. Gielen, P.C.M. Christianen, N.A.J.M. Sommerdijk, S.C.J. Meskers, A.P.H.J. Schenning, Disk micelles from amphiphilic Janus gold nanoparticles. Chem. Commun. 697–699 (2008)

    Google Scholar 

  93. P. Davidson, J.C.P. Gabriel, Mineral liquid crystals. Curr. Opin. Colloid Interface Sci. 9, 377–383 (2005)

    Google Scholar 

  94. U. Shivakumar, J. Mirzaei, X. Feng, A. Sharma, P. Moreira, T. Hegmann, Nanoparticles: complex and multifaceted additives for liquid crystals. Liq. Cryst. 38, 1495–1514 (2011)

    Google Scholar 

  95. T. Hegmann, Modulating the properties of liquid crystals using nanoparticles as dopants. Int. Innov. Rep. 9, 53–55 (2013)

    Google Scholar 

  96. M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Google Scholar 

  97. M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J. Chem. Soc., Chem. Commun. 801–802 (1994)

    Google Scholar 

  98. P.J.G. Goulet, R.B. Lennox, New insights into Brust–Schiffrin metal nanoparticle synthesis. J. Am. Chem. Soc. 132, 9582–9584 (2010)

    Google Scholar 

  99. N.R. Jana, X. Peng, Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 125, 14280–14281 (2003)

    Google Scholar 

  100. X. Mang, X. Zeng, B. Tang, F. Liu, G. Ungar, R. Zhang, L. Cseh, G.H. Mehl, Control of anisotropic self-assembly of gold nanoparticles coated with mesogens. J. Mater. Chem. 22, 11101–11106 (2012)

    Google Scholar 

  101. X. Ji, D. Copenhaver, C. Sichmeller, X. Peng, Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals. J. Am. Chem. Soc. 130, 5726–5735 (2008)

    Google Scholar 

  102. R.C. Hedden, B.J. Bauer, A.P. Smith, F. Gröhn, E. Amis, Templating of inorganic nanoparticles by PAMAM/PEG dendrimer–star polymers. Polymer 43, 5473–5481 (2002)

    Google Scholar 

  103. W. Jia, J. McLachlan, J. Xu, S.M. Tadayyon, P.R. Norton, S.H. Eichhorn, Characterization of Au and Pd nanoparticles by high-temperature TGA–MS. Can. J. Chem. 84, 998–1005 (2006)

    Google Scholar 

  104. M. Iqbal, J. McLachlan, W. Jia, N. Braidy, G. Botton, S.H. Eichhorn, Ligand effects on the size and purity of Pd nanoparticles. J. Therm. Anal. Calorim. 96, 15–20 (2009)

    Google Scholar 

  105. W. Jia, J. McLachlan, J. Xu, S.H. Eichhorn, Size and purity of gold nanoparticles changes with different types of thiolate ligands. J. Therm. Anal. Calorim. 100, 839–845 (2010)

    Google Scholar 

  106. R. Ristau, R. Tiruvalam, P.L. Clasen, E.P. Gorskowski, M.P. Harmer, C.J. Kiely, I. Hussain, M. Brust, Electron microscopy studies of the thermal stability of gold nanoparticle arrays. Gold Bull. 42, 133–143 (2009)

    Google Scholar 

  107. Y. Joseph, I. Besnard, M. Rosenberger, B. Guse, H.-G. Nothofer, J.M. Wessels, U. Wild, A. Knop-Gericke, D. Su, R. Schlögl, A. Yasuda, T. Vossmeyer, Self-assembled gold nanoparticle/alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties. J. Phys. Chem. B 107, 7406–7413 (2003)

    Google Scholar 

  108. M. Draper, I.M. Saez, S.J. Cowling, P. Gai, B. Heinrich, B. Donnio, D. Guillon, J.W. Goodby, Self-assembly and shape morphology of liquid crystalline gold metamaterials. Adv. Funct. Mater. 21, 1260–1278 (2011)

    Google Scholar 

  109. J. Mirzaei, M. Urbanski, H.-S. Kitzerow, T. Hegmann, Synthesis of liquid crystal silane-functionalized gold nanoparticles and their effects on the optical and electro-optic properties of a structurally related nematic liquid crystal. ChemPhysChem 15, 1381–1394 (2014)

    Google Scholar 

  110. N. Kanayama, O. Tsutsumi, A. Kanazawa, T. Ikeda, Distinct thermodynamic behaviour of a mesomorphic gold nanoparticle covered with a liquid-crystalline compound. Chem. Commun. 2640–2641 (2001)

    Google Scholar 

  111. B. Donnio, Liquid-crystalline metallodendrimers. Inorg. Chim. Acta 409, 53–67 (2014)

    Google Scholar 

  112. I. In, Y.-W. Jun, Y.J. Kim, S.Y. Kim, Spontaneous one dimensional arrangement of spherical Au nanoparticles with liquid crystal ligands. Chem. Commun. 800–801 (2005)

    Google Scholar 

  113. S. Frein, J. Boudon, M. Vonlanthen, T. Scharf, J. Barbera, G. Suess-Fink, T. Buergi, R. Deschenaux, Liquid-crystalline thiol- and disulfide-based dendrimers for the functionalization of gold nanoparticles. Helv. Chim. Acta 91, 2321–2337 (2008)

    Google Scholar 

  114. X. Zeng, F. Liu, A.G. Fowler, G. Ungar, L. Cseh, G.H. Mehl, J.E. Macdonald, 3D ordered gold strings by coating nanoparticles with mesogens. Adv. Mater. 21, 1746–1750 (2009)

    Google Scholar 

  115. L. Cseh, G.H. Mehl, The design and investigation of room temperature thermotropic nematic gold nanoparticles. J. Am. Chem. Soc. 128, 13376–13377 (2006)

    Google Scholar 

  116. L. Cseh, G.H. Mehl, Structure-property relationships in nematic gold nanoparticles. J. Mater. Chem. 17, 311–315 (2007)

    Google Scholar 

  117. M. Wojcik, W. Lewandowski, J. Matraszek, J. Mieczkowski, J. Borysiuk, D. Pociecha, E. Gorecka, Liquid-crystalline phases made of gold nanoparticles. Angew. Chem. Int. Ed. 48, 5167–5169 (2009)

    Google Scholar 

  118. M. Wojcik, M. Kolpaczynska, D. Pociecha, J. Mieczkowski, E. Gorecka, Multidimensional structures made by gold nanoparticles with shape-adaptive grafting layers. Soft Matter 6, 5397–5400 (2010)

    ADS  Google Scholar 

  119. J.M. Wolska, D. Pociecha, J. Mieczkowski, E. Gorecka, Gold nanoparticles with flexible mesogenic grafting layers. Soft Matter 9, 3005–3008 (2013)

    ADS  Google Scholar 

  120. K. Kaneko, A. Mandai, B. Heinrich, B. Donnio, T. Hanasaki, Electric-field-induced reversible viscosity change in a columnar liquid crystal. ChemPhysChem 11, 3596–3598 (2010)

    Google Scholar 

  121. V.M. Marx, H. Girgis, P.A. Heiney, T. Hegmann, Bent-core liquid crystal (LC) decorated gold nanoclusters: synthesis, self-assembly, and effects in mixtures with bent-core LC hosts. J. Mater. Chem. 18, 2983–2994 (2008)

    Google Scholar 

  122. B.M. Rosen, C.J. Wilson, D.A. Wilson, M. Peterca, M.R. Imam, V. Percec, Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 109, 6275–6540 (2009)

    Google Scholar 

  123. B. Donnio, P. García-Vázquez, J.L. Gallani, D. Guillon, E. Terazzi, Dendronized ferromagnetic gold nanoparticles self-organized in a termotropic cubic phase. Adv. Mater. 19, 3534–3539 (2007)

    Google Scholar 

  124. K. Kanie, M. Matsubara, X. Zeng, F. Liu, G. Ungar, H. Nakamura, A. Muramatsu, Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona. J. Am. Chem. Soc. 134, 808–811 (2012)

    Google Scholar 

  125. A. Demortiere, S. Buathong, B.P. Pichon, P. Panissod, D. Guillon, S. Begin-Colin, B. Donnio, Nematic-like organization of magnetic mesogen-hybridized nanoparticles. Small 6, 1341–1346 (2010)

    Google Scholar 

  126. B. Donnio, A. Derory, E. Terazzi, M. Drillon, D. Guillon, J.-L. Gallani, Very slow high-temperature relaxation of the remnant magnetic moment in 2 nm mesomorphic gold nanoparticles. Soft Matter 6, 965–970 (2010)

    ADS  Google Scholar 

  127. A. Demortiere, P. Panissod, B.P. Pichon, G. Pourroy, D. Guillon, B. Donnio, S. Begin-Colin, Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale 3, 225–232 (2011)

    ADS  Google Scholar 

  128. S. Kumar, S.K. Pal, P.S. Kumar, V. Lakshminarayanan, Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix. Soft Matter 3, 896–900 (2007)

    ADS  Google Scholar 

  129. Z. Shen, M. Yamada, M. Miyake, Control of stripelike and hexagonal self-assembly of gold nanoparticles by the tuning of interactions between triphenylene ligands. J. Am. Chem. Soc. 129, 14271–14280 (2007)

    Google Scholar 

  130. W. Lewandowski, D. Constantin, K. Walicka, D. Pociecha, J. Mieczkowski, E. Gorecka, Smectic mesophases of functionalized silver and gold nanoparticles with anisotropic plasmonic properties. Chem. Commun. 49, 7845–7847 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Holger Eichhorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eichhorn, S.H., Yu, J.K. (2015). Directed Assembly and Self-organization of Metal Nanoparticles in Two and Three Dimensions. In: Li, Q. (eds) Anisotropic Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18293-3_8

Download citation

Publish with us

Policies and ethics