Advertisement

Rare Earth Based Anisotropic Nanomaterials: Synthesis, Assembly, and Applications

  • Chun-Hua Yan
  • Ling-Dong Sun
  • Chao Zhang
  • Chun-Jiang Jia
  • Guang-Ming Lyu
  • Hao Dong
  • Xiao-Yu Zheng
  • Yan-Jie Wang
  • Shuo Shi
  • Pei-Zhi Zhang
  • Lin-Dong Li
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Rare earths (RE) refer to the lanthanide elements La–Lu together with Sc and Y. Conventionally, they have found applications in phosphors, magnets, catalysts, fuel cell electrodes/electrolyte. Here in this chapter, we discuss the synthesis, assembly and applications of rare earth based anisotropic nanomaterials. Regarding synthesis, the anisotropic growth behaviors of these nanocrystals are predominantly governed by their own unique crystal structures. Yet for wet-chemistry synthetic methods where a number of parameters could be finely tuned, the addition of particular coordination agents, templating agents or mineralizers has proven to be an effective way to direct the growth of nanocrystals into some anisotropic structures. Regarding applications, anisotropic nanomaterials, compared to their isotropic counterparts, often exhibit distinct properties. For example, the luminescence of anisotropic nanomaterials can display polarization and site-specific features. As for rare earth nanomaterials as magnetic resonance imaging (MRI) contrast agents, the high surface area of anisotropic nanostructures can give rise to superior performances. And for catalysis applications, anisotropic nanomaterials expose rich, highly active facets, which is of great importance for facet-selective catalytic reactions. In the chapter, we will start with introduction of the crystal structures of rare earth compounds, then briefly summarize the synthesis and assembly of rare earth anisotropic nanomaterials, and discuss their properties and applications in three realms, namely, luminescence, magnetism and catalysis.

Keywords

Rare Earth Rare Earth Oxide CeO2 Nanoparticles Upconversion Emission Ceria Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Q. Su, Rare Earth Chemistry (Henan Science and Technology Press, Zhengzhou, 1993)Google Scholar
  2. 2.
    G.X. Xu (ed.), Rare Earth, vol. 1. (Metallurgical Industry Press, Beijing, 1995)Google Scholar
  3. 3.
    G.H. Liu (ed.), Rare Earth Materials Science (Chemical Industry Press, Beijing, 2007)Google Scholar
  4. 4.
    G. Brunton, The crystal structure of KBF4. J. Am. Chem. Soc. 25, 2161–2162 (1969)Google Scholar
  5. 5.
    J.H. Burns, Crystal structure of hexagonal sodium neodymium fluoride and related compounds. Inorg. Chem. 6, 881–886 (1965)Google Scholar
  6. 6.
    R.E. Thoma, C.F. Weaver, H.A. Friedman, Phase equilibria in the system LiF-YF3. J. Phys. Chem. 65, 1096–1099 (1961)Google Scholar
  7. 7.
    R.E. Thoma, H. Insley, G.M. Hebert, The sodium fluoride-lanthanide trifluride systems. Inorg. Chem. 7, 1222–1229 (1966)Google Scholar
  8. 8.
    Q. Su (ed.), Rare Earth Chemistry (Henan Science and Technology Press, Zhengzhou, 1993)Google Scholar
  9. 9.
    K.A. Gschneidner (ed.), Handbook on the Physics and Chemistry of Rare Earths (Elsevier, Amsterdam, 2011)Google Scholar
  10. 10.
    M.S. Wickleder, Inorganic lanthanide compounds with complex anions. Chem. Rev. 102, 2011–2087 (2002)Google Scholar
  11. 11.
    C.H. Yan, Z.G. Yan, Y.P. Du, J. Shen, C. Zhang, W. Feng, L.D. Sun, Y.W. Zhang, Handbook on the Physics and Chemistry of Rare Earths, vol. 999. Controlled Synthesis and Properties of Rare Earth Based Nanomaterials (Elsevier, 2009)Google Scholar
  12. 12.
    C.H. Yan, C. Zhang, L.D. Sun, Rare Earth Nanotechnology. Synthesis of Rare Earth Nanomaterials (Pan Stanford Publishing Pte. Ltd., 2012)Google Scholar
  13. 13.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)Google Scholar
  14. 14.
    Y.W. Jun, J.S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 45, 3414–3439 (2006)Google Scholar
  15. 15.
    Z.G. Yan, C.H. Yan, Controlled synthesis of rare earth nanostructures. J. Mater. Chem. 18, 5046–5059 (2008)Google Scholar
  16. 16.
    Q. Yuan, H.H. Duan, L.L. Li, L.D. Sun, Y.W. Zhang, C.H. Yan, Controlled synthesis and assembly of ceria-based nanomaterials. J. Colloid Interface Sci. 335, 151–167 (2009)Google Scholar
  17. 17.
    C.W. Sun, H. Li, L.Q. Chen, Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci. 5, 8475–8505 (2012)Google Scholar
  18. 18.
    R.J. La, Z.A. Hu, H.L. Li, X.L. Shang, Y.Y. Yang, Template synthesis of CeO2 ordered nanowire arrays. Mater. Sci. Eng. A 368, 145–148 (2004)Google Scholar
  19. 19.
    G.S. Wu, T. Xie, X.Y. Yuan, B.C. Cheng, L.D. Zhang, An improved sol–gel template synthetic route to large-scale CeO2 nanowires. Mater. Res. Bull. 39, 1023–1028 (2004)Google Scholar
  20. 20.
    L. González-Rovira, J.M. Sánchez-Amaya, M. López-Haro, E. del Rio, A.B. Hungría, P. Midgley, J.J. Calvino, S. Bernal, F.J. Botana, Single-step process to prepare CeO2 nanotubes with improved catalytic activity. Nano Lett. 9, 1395–1400 (2009)ADSGoogle Scholar
  21. 21.
    C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang, L.Q. Chen, Controlled synthesis of CeO2 nanorods by a solvothermal method. Nanotechnology 16, 1454–1463 (2005)Google Scholar
  22. 22.
    K. Zhou, X. Wang, X. Sun, Q. Peng, Y. Li, Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 229, 206–212 (2005)Google Scholar
  23. 23.
    A. Vantomme, Z.Y. Yuan, G.H. Du, B.L. Su, Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods. Langmuir 21, 1132–1135 (2005)Google Scholar
  24. 24.
    H.X. Mai, L.D. Sun, Y.W. Zhang, R. Si, W. Feng, H.P. Zhang, H.C. Liu, C.H. Yan, Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 109, 24380–24385 (2005)Google Scholar
  25. 25.
    J. Ke, J.W. Xiao, W. Zhu, H. Liu, R. Si, Y.W. Zhang, C.H. Yan, Dopant-induced modification of active site structure and surface bonding mode for high-performance nanocatalysts: CO oxidation on capping-free (110)-oriented CeO2: Ln (Ln = La-Lu) nanowires. J. Am. Chem. Soc. 135, 15191–15200 (2013)Google Scholar
  26. 26.
    Z. Ji, X. Wang, H. Zhang, S. Lin, H. Meng, B. Sun, S. George, T. Xia, A.E. Nel, J.I. Zink, Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano 6, 5366–5380 (2012)Google Scholar
  27. 27.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)ADSGoogle Scholar
  28. 28.
    W.Q. Han, L. Wu, Y. Zhu, Formation and oxidation state of CeO2-x nanotubes. J. Am. Chem. Soc. 127, 12814–12815 (2005)Google Scholar
  29. 29.
    K. Zhou, Z. Yang, S. Yang, Highly reducible CeO2 nanotubes. Chem. Mater. 19, 1215–1217 (2007)Google Scholar
  30. 30.
    J.Y. Chane-Ching, F. Cobo, D. Aubert, H.G. Harvey, M. Airiau, A. Corma, A general method for the synthesis of nanostructured large-surface-area materials through the self-assembly of functionalized nanoparticles. Chem. Eur. J. 11, 979–987 (2005)Google Scholar
  31. 31.
    A.S. Karakoti, S.V.N.T. Kuchibhatla, D.R. Baer, S. Thevuthasan, D.C. Sayle, S. Seal, Self-assembly of cerium oxide nanostructures in ice molds. Small 4, 1210–1216 (2008)Google Scholar
  32. 32.
    R. Si, Y.W. Zhang, L.P. You, C.H. Yan, Self-organized monolayer of nanosized ceria colloids stabilized by poly(vinylpyrrolidone). J. Phys. Chem. B 110, 5994–6000 (2006)Google Scholar
  33. 33.
    Q. Yuan, Q. Liu, W.G. Song, W. Feng, W.L. Pu, L.D. Sun, Y.W. Zhang, C.H. Yan, Ordered mesoporous Ce1-xZrxO2 solid solutions with crystalline walls. J. Am. Chem. Soc. 129, 6698–6699 (2007)Google Scholar
  34. 34.
    H. Wang, Q.L. Huang, J.M. Hong, X.T. Chen, Z.L. Xue, Selective synthesis and characterization of nanocrystalline EuF3 with orthorhombic and hexagonal structures. Cryst. Growth Des. 6, 1972–1974 (2006)Google Scholar
  35. 35.
    H. Wang, Q.L. Huang, J.M. Hong, X.T. Chen, Z.L. Xue, Controlled synthesis and characterization of nanostructured EuF3 with different crystalline phases and morphologies. Cryst. Growth Des. 6, 2169–2173 (2006)Google Scholar
  36. 36.
    X. Wang, J. Zhuang, Q. Peng, Y.D. Li, Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorg. Chem. 45, 6661–6665 (2006)Google Scholar
  37. 37.
    X. Liang, X. Wang, J. Zhuang, Q. Peng, Y.D. Li, Synthesis of NaYF4 nanocrystals with predictable phase and shape. Adv. Funct. Mater. 17, 2757–2765 (2007)Google Scholar
  38. 38.
    X. Liang, X. Wang, J. Zhuang, Q. Peng, Y.D. Li, Branched NaYF4 nanocrystals with luminescent properties. Inorg. Chem. 46, 6050–6055 (2007)Google Scholar
  39. 39.
    L.Y. Wang, P. Li, Y.D. Li, Down- and up-conversion luminescent nanorods. Adv. Mater. 19, 3304–3307 (2007)Google Scholar
  40. 40.
    J.H. Zeng, J. Su, Z.H. Li, R.X. Yan, Y.D. Li, Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+ phosphors of controlled size and morphology. Adv. Mater. 17, 2119–2123 (2005)Google Scholar
  41. 41.
    M.F. Zhang, H. Fan, B.J. Xi, X.Y. Wang, C. Dong, Y.T. Qian, Synthesis, characterization, and luminescence properties of uniform Ln3+-doped YF3 nanospindles. J. Phys. Chem. C 111, 6652–6657 (2007)Google Scholar
  42. 42.
    F. Zhang, Y. Wan, T. Yu, F.Q. Zhang, Y.F. Shi, S.H. Xie, Y.G. Li, L. Xu, B. Tu, D.Y. Zhao, Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew. Chem. Int. Ed. 46, 7976–7979 (2007)Google Scholar
  43. 43.
    H.X. Mai, Y.W. Zhang, R. Si, Z.G. Yan, L.D. Sun, L.P. You, C.H. Yan, High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc. 128, 6426–6436 (2006)Google Scholar
  44. 44.
    Y.P. Du, Y.W. Zhang, Z.G. Yan, L.D. Sun, C.H. Yan, Highly luminescent self-organized sub-2-nm EuOF nanowires. J. Am. Chem. Soc. 131, 16364–16365 (2009)Google Scholar
  45. 45.
    Z.G. Yan, Y.W. Zhang, L.P. You, R. Si, C.H. Yan, General synthesis and characterization of monocrystalline 1D-nanomaterials of hexagonal and orthorhombic lanthanide orthophosphate hydrate. J. Cryst. Growth 262, 408–414 (2004)ADSGoogle Scholar
  46. 46.
    Y.W. Zhang, Z.G. Yan, L.P. You, R. Si, C.H. Yan, General synthesis and characterization of monocrystalline lanthanide orthophosphate nanowires. Eur. J. Inorg. Chem. 2003, 4099–4104 (2003)Google Scholar
  47. 47.
    H. Meyssamy, K. Riwotzki, A. Kornowski, S. Naused, M. Haase, Wet-chemical synthesis of doped colloidal nanomaterials: particles and fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce, Tb. Adv. Mater. 11, 840–844 (1999)Google Scholar
  48. 48.
    M. Yang, H. You, K. Liu, Y. Zheng, N. Guo, H. Zhang, Low-temperature coprecipitation synthesis and luminescent properties of LaPO4:Ln3+(Ln3+=Ce3+, Tb3+) nanowires and LaPO4:Ce3+, Tb3+/LaPO4 core/shell nanowires. Inorg. Chem. 49, 4996–5002 (2010)Google Scholar
  49. 49.
    W.H. Di, X.X. Zhao, S.Z. Lu, X.J. Wang, H.F. Zhao, Thermal and photoluminescence properties of hydrated YPO4:Eu3+ nanowires. J. Solid State Chem. 180, 2478–2484 (2007)ADSGoogle Scholar
  50. 50.
    R.X. Yan, Y.D. Li, Down/up conversion in Ln3+-Doped YF3 nanocrystals. Adv. Funct. Mater. 15, 763–770 (2005)Google Scholar
  51. 51.
    Y.P. Fang, A.W. Xu, R.Q. Song, H.X. Zhang, L.P. You, J.C. Yu, H.Q. Liu, Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. J. Am. Chem. Soc. 125, 16025–16034 (2003)Google Scholar
  52. 52.
    Y.P. Fang, A.W. Xu, A.M. Qin, R.J. Yu, Selective synthesis of hexagonal and tetragonal dysprosium orthophosphate nanorods by a hydrothermal method. Cryst. Growth Des. 5, 1221–1225 (2005)Google Scholar
  53. 53.
    W.B. Bu, H.R. Chen, Z.L. Hua, Z.C. Liu, W.M. Huang, L.X. Zhang, J.L. Shi, Surfactant-assisted synthesis of Tb(III)-doped cerium phosphate single-crystalline nanorods with enhanced green emission. Appl. Phys. Lett. 85, 4307–4309 (2004)ADSGoogle Scholar
  54. 54.
    W.B. Bu, L.X. Zhang, Z.L. Hua, H.R. Chen, J.L. Shi, Synthesis and characterization of uniform spindle-shaped microarchitectures self-assembled from aligned single-crystalline nanowires of lanthanum phosphates. Cryst. Growth Des. 7, 2305–2309 (2007)Google Scholar
  55. 55.
    Y. Xing, M. Li, S.A. Davis, S. Mann, Synthesis and characterization of cerium phosphate nanowires in microemulsion reaction media. J. Phys. Chem. B 110, 1111–1113 (2006)Google Scholar
  56. 56.
    P. Ghosh, J. Oliva, E. De la Rosa, K.K. Haldar, D. Solis, A. Patra, Enhancement of upconversion emission of LaPO4:Er@Yb core−shell nanoparticles/nanorods. J. Phys. Chem. C 112, 9650–9658 (2008)Google Scholar
  57. 57.
    Z.Y. Huo, C. Chen, D. Chu, H.H. Li, Y.D. Li, Systematic synthesis of lanthanide phosphate nanocrystals. Chem. Eur. J. 13, 7708–7714 (2007)Google Scholar
  58. 58.
    H.X. Mai, Y.W. Zhang, L.D. Sun, C.H. Yan, Orderly aligned and highly luminescent monodisperse rare-earth orthophosphate nanocrystals synthesized by a limited anion-exchange reaction. Chem. Mater. 19, 4514–4522 (2007)Google Scholar
  59. 59.
    G.C. Li, K. Chao, H.R. Peng, K.Z. Chen, Z.K. Zhang, Facile synthesis of CePO4 nanowires attached to CeO2 octahedral micrometer crystals and their enhanced photoluminescence properties. J. Phys. Chem. C 112, 16452–16456 (2008)Google Scholar
  60. 60.
    W.L. Fan, W. Zhao, L.P. You, X.Y. Song, W.M. Zhang, H.Y. Yu, S.X. Sun, A simple method to synthesize single-crystalline lanthanide orthovanadate nanorods. J. Solid State Chem. 177, 4399–4403 (2004)ADSGoogle Scholar
  61. 61.
    C.J. Jia, L.D. Sun, Z.G. Yan, Y.C. Pang, S.Z. Lü, C.H. Yan, Monazite and zircon type LaVO4:Eu nanocrystals-synthesis, luminescent properties, and spectroscopic identification of the Eu3+ sites. Eur. J. Inorg. Chem. 18, 2626–2635 (2010)Google Scholar
  62. 62.
    C.J. Jia, L.D. Sun, F. Luo, X.C. Jiang, L.H. Wei, C.H. Yan, Structural transformation induced improved luminescent properties for LaVO4: Eu Nanocrystals. Appl. Phys. Lett. 84, 5305–5307 (2004)ADSGoogle Scholar
  63. 63.
    C.J. Jia, L.D. Sun, L.P. You, X.C. Jiang, F. Luo, Y.C. Pang, C.H. Yan, Selective synthesis of monazite- and zircon-type LaVO4 nanocrystals. J. Phys. Chem. B 109, 3284–3290 (2005)Google Scholar
  64. 64.
    W.L. Fan, X.Y. Song, S.X. Sun, X. Zhao, Microemulsion-mediated hydrothermal synthesis and characterization of zircon-type LaVO4 nanowires. J. Solid State Chem. 180, 284–290 (2007)ADSGoogle Scholar
  65. 65.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSGoogle Scholar
  66. 66.
    H. Li, J. Wu, Z. Yin, H. Zhang, Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47, 1067–1075 (2014)Google Scholar
  67. 67.
    M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)Google Scholar
  68. 68.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nano. 7, 699–712 (2012)Google Scholar
  69. 69.
    H. Imagawa, S.H. Sun, Controlled synthesis of monodisperse CeO2 nanoplates developed from assembled nanoparticles. J. Phys. Chem. C 116, 2761–2765 (2012)Google Scholar
  70. 70.
    X.H. Guo, C.C. Mao, J. Zhang, J. Huang, W.N. Wang, Y.H. Deng, Y.Y. Wang, Y. Cao, W.X. Huang, S.H. Yu, Cobalt-doping-induced synthesis of ceria nanodisks and their significantly enhanced catalytic activity. Small 8, 1515–1520 (2012)Google Scholar
  71. 71.
    R. Si, Y.W. Zhang, L.P. You, C.H. Yan, Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks. Angew. Chem. Int. Ed. 44, 3256–3260 (2005)Google Scholar
  72. 72.
    R. Si, Y.W. Zhang, H.P. Zhou, L.D. Sun, C.H. Yan, Controlled-synthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals. Chem. Mater. 19, 18–27 (2006)Google Scholar
  73. 73.
    D. Wang, Y. Kang, V. Doan-Nguyen, J. Chen, R. Küngas, N.L. Wieder, K. Bakhmutsky, R.J. Gorte, C.B. Murray, Synthesis and oxygen storage capacity of two-dimensional ceria nanocrystals. Angew. Chem. Int. Ed. 50, 4378–4381 (2011)Google Scholar
  74. 74.
    T. Yu, B. Lim, Y. Xia, Aqueous-phase synthesis of single-crystal ceria nanosheets. Angew. Chem. Int. Ed. 49, 4484–4487 (2010)Google Scholar
  75. 75.
    Y. Sun, Q. Liu, S. Gao, H. Cheng, F. Lei, Z. Sun, Y. Jiang, H. Su, S. Wei, Y. Xie, Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation. Nat. Commun. 4, 2899–2907 (2013)ADSGoogle Scholar
  76. 76.
    H. Hu, Z.G. Chen, T.Y. Cao, Q. Zhang, M.G. Yu, F.Y. Li, T. Yi, C.H. Huang, Hydrothermal synthesis of hexagonal lanthanide-doped LaF3 nanoplates with bright upconversion luminescence. Nanotechnology 19, 375702 (2008)ADSGoogle Scholar
  77. 77.
    Y.W. Zhang, X. Sun, R. Si, L.P. You, C.H. Yan, Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 127, 3260–3261 (2005)Google Scholar
  78. 78.
    Y.P. Du, Y.W. Zhang, L.D. Sun, C.H. Yan, Atomically efficient synthesis of self-assembled monodisperse and ultrathin lanthanide oxychloride nanoplates. J. Am. Chem. Soc. 131, 3162–3163 (2009)Google Scholar
  79. 79.
    H.P. Zhou, C. Zhang, C.H. Yan, Controllable assembly of diverse rare-earth nanocrystals via the Langmuir-Blodgett technique and the underlying size- and symmetry-dependent assembly kinetics. Langmuir 25, 12914–12925 (2009)Google Scholar
  80. 80.
    L.W. Qian, J. Zhu, Z. Chen, Y.C. Gui, Q. Gong, Y.P. Yuan, J.T. Zai, X.F. Qian, Self-assembled heavy lanthanide orthovanadate architecture with controlled dimensionality and morphology. Chem. Eur. J. 15, 1233–1240 (2009)Google Scholar
  81. 81.
    J.F. Liu, Y.D. Li, Synthesis and self-assembly of luminescent Ln3+-doped LaVO4 uniform nanocrystals. Adv. Mater. 19, 1118–1122 (2007)Google Scholar
  82. 82.
    J.F. Liu, Y.D. Li, General synthesis of colloidal rare earth orthovanadate nanocrystals. J. Mater. Chem. 17, 1797–1803 (2007)Google Scholar
  83. 83.
    J.-C.G. Bünzli, C. Piguet, Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2009)Google Scholar
  84. 84.
    J. Shen, L.D. Sun, C.H. Yan, Luminescent rare earth nanomaterials for bioprobe applications. Dolton Trans. 42, 5687–5697 (2008)Google Scholar
  85. 85.
    S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater. Sci. Eng. A 71, 1–34 (2010)Google Scholar
  86. 86.
    J.W. Stouwdam, F.C.J.M. van Veggel, Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 7, 733–737 (2002)ADSGoogle Scholar
  87. 87.
    J. Shen, L.D. Sun, J.D. Zhu, L.H. Wei, H.F. Sun, C.H. Yan, Biocompatible bright YVO4: Eu nanoparticles as versatile optical bioprobes. Adv. Funct. Mater. 20, 3708–3714 (2010)Google Scholar
  88. 88.
    C.-J. Carling, F. Nourmohammadian, J.-C. Boyer, N.R. Branda, Remote-control photorelease of caged compounds using near-infrared light and upconverting nanoparticles. Angew. Chem. Int. Ed. 49, 3782–3785 (2010)Google Scholar
  89. 89.
    L.T. Su, S.K. Karuturi, J.S. Luo, L.J. Liu, X.F. Liu, J. Guo, T.C. Sum, R.R. Deng, H.J. Fan, X.G. Liu, A.L.Y. Tok, Photon upconversion in hetero-nanostructured photoanodes for enhanced near-Infrared light harvesting. Adv. Mater. 25, 1603–1607 (2013)Google Scholar
  90. 90.
    W.-Y. Huang, F. Yoshimura, K. Ueda, Y. Shimomura, H.-S. Sheu, T.-S. Chan, H.F. Greer, W.Z. Zhou, S.-F. Hu, R.-S. Liu, J.P. Attfield, Nanosegregation and neighbor-cation control of photoluminescence in carbidonitridosilicate phosphors. Angew. Chem. Int. Ed. 52, 8012–8016 (2013)Google Scholar
  91. 91.
    Z.H. Xu, X.J. Kang, C.X. Li, Z.Y. Hou, C.M. Zhang, D.M. Yang, G.G. Li, J. Lin, Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties. Inorg. Chem. 49, 6706–6715 (2010)Google Scholar
  92. 92.
    X.G. Zhang, L.Y. Zhou, Q. Pang, J.X. Shi, M.L. Gong, Tunable luminescence and Ce3+ → Tb3+ → Eu3+ energy transfer of broadband-excited and narrow line red emitting Y2SiO5:Ce3+, Tb3+, Eu3+ Phosphor. J. Phys. Chem. C 118, 7591–7598 (2014)Google Scholar
  93. 93.
    Y.S. Liu, S.Y. Zhou, D.T. Tu, Z. Chen, M.D. Huang, H.M. Zhu, E. Ma, X.Y. Chen, Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging. J. Am. Chem. Soc. 134, 15083–15090 (2012)Google Scholar
  94. 94.
    Q.Y. Zhang, X.Y. Huang, Recent progress in quantum cutting phosphors. Prog. Mater Sci. 55, 353–427 (2010)Google Scholar
  95. 95.
    R.T. Wegh, H. Donker, K.D. Oskam, A. Meijerink, Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 283, 663–666 (1999)ADSGoogle Scholar
  96. 96.
    B.M. van der Ende, L. Aarts, A. Meijerink, Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11, 11081–11095 (2009)Google Scholar
  97. 97.
    F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004)Google Scholar
  98. 98.
    F. Wang, X.G. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976–989 (2009)Google Scholar
  99. 99.
    M. Haase, H. Schäfer, Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011)Google Scholar
  100. 100.
    H. Dong, L.D. Sun, C.H. Yan, Basic understanding of the lanthanide related upconversion emissions. Nanoscale 5, 5703–5714 (2013)ADSGoogle Scholar
  101. 101.
    N. Menyuk, K. Dwight, J.W. Pierce, NaYF4:Yb, Er-an efficient upconversion phosphor. Appl. Phys. Lett. 21, 159–161 (1972)ADSGoogle Scholar
  102. 102.
    S. Heer, K. Krömpe, H.-U. Güdel, M. Haase, Highly efficient multicolor upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105 (2004)Google Scholar
  103. 103.
    G.F. Wang, Q. Peng, Y.D. Li, Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 131, 14200–14201 (2010)Google Scholar
  104. 104.
    H.X. Mai, Y.W. Zhang, L.D. Sun, C.H. Yan, Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb, Er core and core/shell-structured nanocrystals. J. Phys. Chem. C 111, 13721–13729 (2007)Google Scholar
  105. 105.
    J.C. Boyer, F. Vetrone, J.A. Capobianco, A. Speghini, M. Bettinelli, Yb3+ ion as a sensitizer for the upconversion luminescence in nanocrystalline Gd3Ga5O12:Ho3+. Chem. Phys. Lett. 390, 403–407 (2004)ADSGoogle Scholar
  106. 106.
    A.X. Yin, Y.W. Zhang, L.D. Sun, C.H. Yan, Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb, Tm nanocrystals. Nanoscale 2, 953–959 (2010)ADSGoogle Scholar
  107. 107.
    J.J. Zhou, G.X. Chen, E. Wu, G. Bi, B.T. Wu, Y. Teng, S.F. Zhou, J.R. Qiu, Ultrasensitive polarized up-conversion of Tm3+−Yb3+ doped β-NaYF4 single nanorod. Nano Lett. 13, 2241–2246 (2013)ADSGoogle Scholar
  108. 108.
    H.X. Mai, Y.W. Zhang, L.D. Sun, C.H. Yan, Size- and phase-controlled synthesis of monodisperse NaYF4:Yb, Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem. C 111, 13730–13739 (2007)Google Scholar
  109. 109.
    Y.P. Du, Y.W. Zhang, Z.G. Yan, L.D. Sun, S. Gao, C.H. Yan, Single-crystalline and near-monodispersed NaMF3 (M = Mn Co, Ni, Mg) and LiMAlF6 (M = Ca, Sr) nanocrystals from cothermolysis of multiple trifluoroacetates in solution. Chem. Asian J. 2, 965–974 (2007)Google Scholar
  110. 110.
    F. Wang, L.D. Sun, J. Gu, Y.F. Wang, W. Feng, Y. Yang, J.F. Wang, C.H. Yan, Selective heteroepitaxial nanocrystal growth of rare earth fluorides on sodium chloride: synthesis and density functional calculations. Angew. Chem. Int. Ed. 51, 8796–8799 (2012)Google Scholar
  111. 111.
    Y.J. Ding, X. Teng, H. Zhu, L.L. Wang, W.B. Pei, J.J. Zhu, L. Huang, W. Huang, Orthorhombic KSc2F7:Yb/Er nanorods: controlled synthesis and strong red upconversion emission. Nanoscale 5, 11928–11932 (2013)ADSGoogle Scholar
  112. 112.
    J. Wang, R.R. Deng, M.A. MacDonald, B. Chen, J.K. Yuan, F. Wang, D.Z. Chi, T.S.A. Hor, P. Zhang, G.K. Liu, Y. Han, X.G. Liu, Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat. Mater. 13, 157–162 (2014)ADSGoogle Scholar
  113. 113.
    G.F. Wang, Q. Peng, Y.D. Li, Luminescence tuning of upconversion nanocrystals. Chem. Eur. J. 16, 4923–4931 (2010)Google Scholar
  114. 114.
    L.J. Huang, L.L. Wang, X.J. Xue, D. Zhao, G.S. Qin, W.P. Qin, Enhanced red upconversion luminescence in Er–Tm codoped NaYF4 phosphor. J. Nanosci. Nanotechnol. 11, 9498–9501 (2011)Google Scholar
  115. 115.
    C. Zhang, J.Y. Lee, Prevalence of anisotropic shell growth in rare earth core-shell upconversion nanocrystals. ACS Nano 7, 4393–4402 (2013)MathSciNetGoogle Scholar
  116. 116.
    Y.H. Zhang, L.X. Zhang, R.R. Deng, J. Tian, Y. Zong, D.Y. Jin, X.G. Liu, Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 136, 4893–4896 (2014)Google Scholar
  117. 117.
    W. Feng, L.D. Sun, C.H. Yan, Ag nanowires enhanced upconversion emission of NaYF4:Yb, Er nanocrystals via a direct assembly method. Chem. Commun. 29, 4393–4395 (2009)Google Scholar
  118. 118.
    N.J. Greybush, M. Saboktakin, X.C. Ye, C.D. Giovampaola, S.J. Oh, N.E. Berry, N. Engheta, C.B. Murray, C.R. Kagan, Luminescence in single nanophosphornanorod heterodimers formed through template-assisted self-assembly. ACS Nano 8, 9482–9491 (2014)Google Scholar
  119. 119.
    J.Y. Dong, J.I. Zink, Taking the temperature of the interiors of magnetically heated nanoparticles. ACS Nano 8, 5199–5207 (2014)Google Scholar
  120. 120.
    Y.F. Wang, G.Y. Liu, L.D. Sun, J.W. Xiao, J.C. Zhou, C.H. Yan, Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 7, 7200–7206 (2013)Google Scholar
  121. 121.
    H.L. Wen, H. Zhu, X. Chen, T.F. Hung, B.L. Wag, G.Y. Zhu, S.F. Yu, F. Wang, Upconverting near-infrared light through energy management in core–shell–shell nanoparticles. Angew. Chem. Int. Ed. 52, 13419–13423 (2013)Google Scholar
  122. 122.
    J. Shen, G.Y. Chen, A.-M. Vu, W. Fan, O.S. Bilsel, C.-C. Chang, G. Han, Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv. Opt. Mater. 1, 644–650 (2013)Google Scholar
  123. 123.
    X.J. Xie, N.Y. Gao, R.R. Deng, Q. Sun, Q.H. Xu, X.G. Liu, Mechanistic investigation of photon upconversion in Nd3+-sensitized core−shell nanoparticles. J. Am. Chem. Soc. 135, 12608–12611 (2013)Google Scholar
  124. 124.
    J. Zhou, Z. Liu, F.Y. Li, Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 41, 1323–1349 (2012)Google Scholar
  125. 125.
    Z.J. Gu, L. Yan, G. Tian, S.J. Li, Z.F. Chai, Y.L. Zhao, Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater. 25, 3758–3779 (2013)Google Scholar
  126. 126.
    H.C. Guo, S.Q. Sun, Lanthanide-doped upconverting phosphors for bioassay and therapy. Nanoscale 4, 6692–6706 (2012)ADSGoogle Scholar
  127. 127.
    X.Y. Huang, S.Y. Han, W. Huang, X.G. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42, 173–201 (2013)Google Scholar
  128. 128.
    B. Yan, J.-C. Boyer, N.R. Branda, Y. Zhao, Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J. Am. Chem. Soc. 133, 19714–19717 (2011)Google Scholar
  129. 129.
    Y.F. Wang, L.D. Sun, J.W. Xiao, W. Feng, J.C. Zhou, J. Shen, C.H. Yan, Rare-earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage. Chem. Eur. J. 18, 5558–5564 (2012)Google Scholar
  130. 130.
    S.F. Lim, R. Riehn, W.S. Ryu, N. Khanarian, C.-K. Tung, D. Tank, R.H. Austin, In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano Lett. 6, 169–174 (2006)ADSGoogle Scholar
  131. 131.
    D.K. Chatterjee, A.J. Rufihah, Y. Zhang, Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29, 937–943 (2009)Google Scholar
  132. 132.
    T.S. Yang, Y. Sun, Q. Liu, W. Feng, P.Y. Yang, F.Y. Li, Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials 33, 3733–3742 (2012)Google Scholar
  133. 133.
    J.C. Zhou, Z.L. Yang, W. Dong, R.J. Tang, L.D. Sun, C.H. Yan, Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb, Tm nanocrystals. Biomaterials 32, 9059–9067 (2011)Google Scholar
  134. 134.
    Q. Liu, Y. Sun, T.S. Yang, W. Feng, C.G. Li, F.Y. Li, Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 133, 17122–17125 (2011)Google Scholar
  135. 135.
    L. Cheng, K. Yang, Y.G. Li, J.H. Chen, C. Wang, M.W. Shao, S.-T. Lee, Z. Liu, Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. 123, 7523–7528 (2011)Google Scholar
  136. 136.
    X.F. Qiao, J.C. Zhou, J.W. Xiao, Y.F. Wang, L.D. Sun, C.H. Yan, Triple-functional core–shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro. Nanoscale 4, 4611–4623 (2012)ADSGoogle Scholar
  137. 137.
    Y. Liu, M. Chen, T.Y. Cao, Y. Sun, C.Y. Li, Q. Liu, T.S. Yang, L.M. Yao, W. Feng, F.Y. Li, A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J. Am. Chem. Soc. 135, 9869–9876 (2013)Google Scholar
  138. 138.
    C.-J. Cailing, J.-C. Boyer, N.R. Branda, Remote-control photoswitching using NIR light. J. Am. Chem. Soc. 131, 10838–10839 (2009)Google Scholar
  139. 139.
    J.-C. Boyer, C.-J. Carling, B.D. Gates, N.R. Branda, Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. J. Am. Chem. Soc. 132, 15766–15772 (2010)Google Scholar
  140. 140.
    Y.M. Yang, Q. Shao, R.R. Deng, C. Wang, X. Teng, K. Cheng, Z. Cheng, L. Huang, Z. Liu, X.G. Liu, B.G. Xing, In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem. Int. Ed. 51, 3125–3129 (2012)Google Scholar
  141. 141.
    L. Wang, H. Dong, Y.N. Li, C.M. Xue, L.D. Sun, C.H. Yan, Q. Li, Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles. J. Am. Chem. Soc. 136, 4480–4483 (2014)Google Scholar
  142. 142.
    B.W. Wang, S.D. Jiang, X.T. Wang, Magnetic molecular materials with paramagnetic lanthanide ions. Sci. China Ser. B 52, 1739–1758 (2009)Google Scholar
  143. 143.
    Q. Su (ed.), Chemistry of Rare Earths (Henan Science and Technology Press, Zhengzhou, 1993)Google Scholar
  144. 144.
    M. Bottrill, L.K. Nicholas, N.J. Long, Lanthanides in magnetic resonance imaging. Chem. Soc. Rev. 35, 557–571 (2006)Google Scholar
  145. 145.
    P. Caravan, Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 35, 512–523 (2006)Google Scholar
  146. 146.
    C. Geraldes, S. Laurent, Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol. Imaging 4, 1–23 (2009)Google Scholar
  147. 147.
    Z.J. Zhou, Z.H. Zhao, H. Zhang, Z.Y. Wang, X.Y. Chen, R.F. Wang, Z. Chen, J.H. Gao, Interplay between longitudinal and transverse contrasts in Fe3O4 nanoplates with (111) exposed surfaces. ACS Nano 8, 7976–7985 (2014)Google Scholar
  148. 148.
    P.J. Klemm, W.C. Floyd, D.E. Smiles, J.M.J. Frechet, K.N. Raymond, Improving T 1 and T 2 magnetic resonance imaging contrast agents through the conjugation of an esteramide dendrimer to high-water-coordination Gd(III) hydroxypyridinone complexes. Contrast Media Mol. Imaging 7, 95–99 (2012)Google Scholar
  149. 149.
    S. Aime, M. Fasano, E. Terreno, Lanthanide(III) chelates for NMR biomedical applications. Chem. Soc. Rev. 27, 19–29 (1998)Google Scholar
  150. 150.
    P. Caravan, J.J. Ellison, T.J. McMurry, R.B. Lauffer, Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 99, 2293–2352 (1999)Google Scholar
  151. 151.
    H.B. Na, I.C. Song, T. Hyeon, Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 21, 2133–2148 (2009)Google Scholar
  152. 152.
    M.A. McDonald, K.L. Watkin, Small particulate gadolinium oxide and gadolinium oxide albumin microspheres as multimodal contrast and therapeutic agents. Invest. Radiol. 38, 305–310 (2003)Google Scholar
  153. 153.
    F. Chen, W. Bu, S. Zhang, J. Liu, W. Fan, L. Zhou, W. Peng, J. Shi, Gd3+-ion-doped upconversion nanoprobes: relaxivity mechanism probing and sensitivity optimization. Adv. Funct. Mater. 23, 298–307 (2013)Google Scholar
  154. 154.
    M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, H.J. Weinmann, Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 40, 715–724 (2005)Google Scholar
  155. 155.
    J.Y. Park, M.J. Baek, E.S. Choi, S. Woo, J.H. Kim, T.J. Kim, J.C. Jung, K.S. Chae, Y. Chang, G.H. Lee, Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T 1 MR1 contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T 1 MR images. ACS Nano 3, 3663–3669 (2009)Google Scholar
  156. 156.
    N.J.J. Johnson, W. Oakden, G.J. Stanisz, R.S. Prosser, F.C.J.M. van Veggel, Size-tunable, ultrasmall NaGdF4 nanoparticles: insights into their T 1 MRI contrast enhancement. Chem. Mater. 23, 3714–3722 (2011)Google Scholar
  157. 157.
    H. Hifumi, S. Yamaoka, A. Tanimoto, D. Citterio, K. Suzuki, Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. J. Am. Chem. Soc. 128, 15090–15091 (2006)Google Scholar
  158. 158.
    H. Hifumi, S. Yamaoka, A. Tanimoto, T. Akatsu, Y. Shindo, A. Honda, D. Citterio, K. Oka, S. Kuribayashi, Dextran coated gadolinium phosphate nanoparticles for magnetic resonance tumor imaging. J. Mater. Chem. 19, 6393–6399 (2009)Google Scholar
  159. 159.
    Y. Gossuin, A. Hocq, Q.L. Vuong, S. Disch, R.P. Hermann, P. Gillis, Physico-chemical and NMR relaxometric characterization of gadolinium hydroxide and dysprosium oxide nanoparticles. Nanotechnology 19, 475102 (2008)ADSGoogle Scholar
  160. 160.
    W. Ren, G. Tian, L. Zhou, W.Y. Yin, L. Yan, S. Jin, Y. Zu, S.J. Li, Z.J. Gu, Y.L. Zhao, Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. Nanoscale 4, 3754–3760 (2012)ADSGoogle Scholar
  161. 161.
    Y.C. Li, T. Chen, W.H. Tan, D.R. Talham, Size-dependent MRI relaxivity and dual imaging with Eu0.2Gd0.8PO4 center dot H2O nanoparticles. Langmuir 30, 5873–5879 (2014)Google Scholar
  162. 162.
    G.K. Das, B.C. Heng, S.C. Ng, T. White, J.S.C. Loo, L. D’Silva, P. Padmanabhan, K.K. Bhokoo, S.T. Selvan, T.T.Y. Tan, Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging. Langmuir 26, 8959–8965 (2010)Google Scholar
  163. 163.
    Y. Zhang, G.K. Das, V. Vijayaragavan, Q.C. Xu, P. Padmanabhan, K.K. Bhakoo, S.T. Selvan, T.T.Y. Tan, “Smart” theranostic lanthanide nanoprobes with simultaneous up-conversion fluorescence and tunable T1-T2 magnetic resonance imaging contrast and near-infrared activated photodynamic therapy. Nanoscale 6, 12609–12617 (2014)ADSGoogle Scholar
  164. 164.
    Y. Tian, H.Y. Yang, K. Li, X. Jin, Monodispersed ultrathin GdF3 nanowires: Oriented attachment, luminescence, and relaxivity for MRI contrast agents. J. Mater. Chem. 22, 22510–22516 (2012)Google Scholar
  165. 165.
    T. Paik, T.R. Gordon, A.M. Prantner, H. Yun, C.B. Murray, Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes. ACS Nano 7, 2850–2859 (2013)Google Scholar
  166. 166.
    M. Cho, R. Sethi, J.S.A. Narayanan, S.S. Lee, D.N. Benoit, N. Taheri, P. Decuzzi, V.L. Colvin, Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging. Nanoscale 6, 13637–13645 (2014)ADSGoogle Scholar
  167. 167.
    H. Hu, D. Li, S. Liu, M.Z. Wang, R. Moats, P.S. Conti, Z.B. Li, Integrin α2β1 targeted GdVO4: Eu ultrathin nanosheet for multimodal PET/MR imaging. Biomaterials 35, 8649–8658 (2014)Google Scholar
  168. 168.
    H. Hu, S. Liu, D. Li, M.Z. Wang, R. Moats, H. Shan, P.S. Conti, Z.B. Li, The synthesis of lanthanide-doped GdVO4 ultrathin nanosheets with great optical and paramagnetic properties for FRET biodetection and in vivo MR imaging. J. Mater. Chem. B 2, 3998–4007 (2014)Google Scholar
  169. 169.
    M. Abdesselem, M. Schoeffel, I. Maurin, R. Ramodiharilafy, G. Autret, O. Clement, P.L. Tharaux, J.P. Boilot, T. Gacoin, C. Bouzigues, Multifunctional rare-earth vanadate nanoparticles: luminescent labels, oxidant sensors, and MRI contrast agents. ACS Nano 8, 11126–11137 (2014)Google Scholar
  170. 170.
    D.H. Geschwind, G. Konopka, Neuroscience in the era of functional genomics and systems biology. Nature 461, 908–915 (2009)ADSGoogle Scholar
  171. 171.
    E. Terreno, D.D. Castelli, A. Viale, S. Aime, Challenges for molecular magnetic resonance imaging. Chem. Rev. 110, 3019–3042 (2010)Google Scholar
  172. 172.
    L. Helm, Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications. Future Med. Chem. 2, 385–396 (2010)Google Scholar
  173. 173.
    M. Norek, J.A. Peters, MRI contrast agents based on dysprosium or holmium. Prog. Nucl. Magn. Reson. Spectrosc. 59, 64–82 (2011)Google Scholar
  174. 174.
    M. Norek, E. Kampert, U. Zeitler, J.A. Peters, Tuning of the size of Dy2O3 nanoparticles for optimal performance as an MRI contrast agent. J. Am. Chem. Soc. 130, 5335–5340 (2008)Google Scholar
  175. 175.
    S. Viswanathan, Z. Kovacs, K.N. Green, S.J. Ratnakar, A.D. Sherry, Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem. Rev. 110, 2960–3018 (2010)Google Scholar
  176. 176.
    G.K. Das, N.J.J.Johnson, J. Cramen, B. Blasiak, P. Latta, B.Tomanek, C.J.M. van Veggel, NaDyF4 nanoparticles as T 2 contrast agents for ultrahigh field magnetic resonance imaging. J. Phys. Chem. Lett. 3, 524–529 (2012)Google Scholar
  177. 177.
    H. Wang, Z. Yi, L. Rao, H.R. Liu, S.J. Zeng, High quality multi-functional NaErF4 nanocrystals: structure-controlled synthesis, phase-induced multi-color emissions and tunable magnetic properties. J. Mater. Chem. C 1, 5520–5526 (2013)Google Scholar
  178. 178.
    H. Wang, W. Lu, T. Zeng, Z. Yi, L. Rao, H. Liu, S. Zeng, Multi-functional NaErF4: Yb nanorods: enhanced red upconversion emission, in vitro vell, in vivo X-ray, and T2-weighted magnetic resonance imaging. Nanoscale 6, 2855–2860 (2014)ADSGoogle Scholar
  179. 179.
    A. Xia, X. Zhang, J. Zhang, Y.Y. Deng, Q. Chem, S. S. Wu, X. H. Huang, J. Shen. Enhanced dual contrast agent, Co2+-doped NaYF4:Yb3+, Tm3+ nanorods, for near infrared-to-near infrared upconversion luminescence and magnetic resonance imaging. Biomaterials 35, 9167–9176 (2014)Google Scholar
  180. 180.
    K. Kattel, J.Y. Park, W. Xu, H.G. Kim, E.J. Lee, B.A. Bony, W.C. Heo, S. Jin, J.S. Baeck, Y. Chang, Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T 2 MRI contrast agents. Biomaterials 33, 3254–3261 (2012)Google Scholar
  181. 181.
    K. Kattel, J.Y. Park, W. Xu, B.A. Bony, W.C. Heo, T. Tegafaw, C.R. Kim, M.W. Ahmad, S. Jin, J.S. Baeck, Surface coated Eu(OH)3 nanorods: a facile synthesis, characterization, MR relaxivities and in vitro cytotoxicity. J. Nanosci. Nanotechnol. 13, 7214–7219 (2013)Google Scholar
  182. 182.
    J. Zhou, Z.G. Lu, G.G. Shan, S.H. Wang, Y. Liao, Gadolinium complex and phosphorescent probe-modified NaDyF4 nanorods for T 1- and T 2-weighted MRI/CT/phosphorescence multimodality imaging. Biomaterials 35, 368–377 (2014)Google Scholar
  183. 183.
    M.J. Bailey, R. van der Weegen, P.J. Klemm, S.L. Baker, B.A. Helms, Stealth rare earth oxide nanodiscs for magnetic resonance imaging. Adv. Healthc. Mater. 1, 437–442 (2012)Google Scholar
  184. 184.
    A. Trovarelli, A.C.D. Leitenburg, M. Boaro, G. Dolcetti, The utilization of ceria in industrial catalysis. Catal. Today. 50, 353–367 (1999)Google Scholar
  185. 185.
    Z.L. Wang, X.D. Feng, Polyhedral shapes of CeO2 nanoparticles. J. Phys. Chem. B 107, 13563–13566 (2003)Google Scholar
  186. 186.
    D.S. Zhang, X.J. Du, L.Y. Shi, R.H. Gao, Shape-controlled synthesis and catalytic application of Ceria nanomaterials. Dalton Trans. 41, 14455–14475 (2012)Google Scholar
  187. 187.
    E. Shoko, M.F. Smith, R.H. McKenzie, Charge distribution near bulk oxygen vacancies in cerium oxides. J. Phys.: Condens. Matter 22, 223201–223218 (2010)ADSGoogle Scholar
  188. 188.
    X.W. Liu, K.B. Zhou, L. Wang, B.Y. Wang, Y.D. Li, Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 131, 3140–3141 (2009)Google Scholar
  189. 189.
    L. Vivier, D. Duprez, Ceria-based solid catalysts for organic chemistry. ChemSusChem. 3, 654–678 (2010)Google Scholar
  190. 190.
    J.C. Conesa, Computer modeling of surfaces and defects on cerium dioxide. Surf. Sci. 339, 337–352 (1995)ADSGoogle Scholar
  191. 191.
    D.C. Sayle, S.A. Maicaneanu, G.W. Watson, Atomistic models for CeO2 (111), (110), and (100) nanoparticles, supported on yttrium-stabilized zirconia. J. Am. Chem. Soc. 124, 11429–11439 (2002)Google Scholar
  192. 192.
    E. Aneggi, C.D. Leitenburg, J. Llorca, A. Trovarelli, Higher activity of diesel soot oxidation over polycrystalline ceria and ceria–zirconia solid solutions from more reactive surface planes. Catal. Today 197, 119–126 (2012)Google Scholar
  193. 193.
    C.S. Pan, D.S. Zhang, L.Y. Shi, J.H. Fang, Template-free synthesis, controlled conversion, and CO oxidation properties of CeO2 nanorods, nanotubes, nanowires, and nanocubes. Eur. J. Inorg. Chem. 2008, 2429–2436 (2008)Google Scholar
  194. 194.
    X. Wang, Z.Y. Jiang, B.J. Zheng, Z.X. Xie, L.S. Zheng, Synthesis and shape-dependent catalytic properties of CeO2 nanocubes and truncated octahedral. CrystEngComm 14, 7579–7582 (2012)Google Scholar
  195. 195.
    X. W. Lu, X.Z. Li, J.C. Qian, Z.G. Chen, The surfactant-assisted synthesis of CeO2 nanowires and their catalytic performance for CO oxidation. Powder Technol. 239, 415–421 (2013)Google Scholar
  196. 196.
    C.S. Pan, D.S. Zhang, L.Y. Shi, CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods. J. Solid State Chem. 181, 1298–1306 (2008)ADSGoogle Scholar
  197. 197.
    X.Z. Li, F. Chen, X.W. Lu, C.Y. Ni, X.B. Zhao, Z.G. Chen, Layer-by-layer synthesis of hollow spherical CeO2 templated by carbon spheres. J. Porous Mater. 17, 297–303 (2010)Google Scholar
  198. 198.
    C. Ho, J.C. Yu, T. Kwong, A.C. Mak, S.Y. Lai, Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures. Chem. Mater. 17, 4514–4522 (2005)Google Scholar
  199. 199.
    C.W. Sun, L.Q. Chen, Controllable synthesis of shuttle-shaped ceria and its catalytic properties for CO oxidation. Eur. J. Inorg. Chem. 2009, 3883–3887 (2009)Google Scholar
  200. 200.
    X. Liang, J.J. Xiao, B.H. Chen, Y.D. Li, Catalytically stable and active CeO2 mesoporous spheres. Inorg. Chem. 49, 8188–8190 (2010)Google Scholar
  201. 201.
    Z.L. Wu, M.J. Li, J. Howe, H.M. Meyer, S.H. Overbury, Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 26, 16595–16606 (2010)Google Scholar
  202. 202.
    Z.L. Wu, M.J. Li, S.H. Overbury, On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J. Catal. 285, 61–73 (2012)Google Scholar
  203. 203.
    Z.M. Tana, J. Li, H. Li, Y. Li, W. Shen, Morphology-dependent redox and catalytic properties of CeO2 nanostructures: nanowires, nanorods and nanoparticles. Catal. Today 148, 179–183 (2009)Google Scholar
  204. 204.
    B. Choudhury, P. Chetri, A. Choudhury, Oxygen defects and formation of Ce3+ affecting the photocatalytic performance of CeO2 nanoparticles. RSC Adv. 4, 4663–4671 (2014)Google Scholar
  205. 205.
    P.F. Ji, J.L. Zhang, F. Chen, M. Anpo, Ordered mesoporous CeO2 synthesized by nanocasting from cubic Ia3d mesoporous MCM-48 silica: formation, characterization and photocatalytic activity. J. Phys. Chem. C 112, 17809–17813 (2008)Google Scholar
  206. 206.
    X.H. Lu, D.Z. Zheng, J.Y. Gan, Z.Q. Liu, C.L. Liang, P. Liu, Y.X. Tong, Porous CeO2 nanowires/nanowire arrays: electrochemical synthesis and application in water treatment. J. Mater. Chem. 20, 7118–7122 (2010)Google Scholar
  207. 207.
    Z.J. Yan, J.J. Wei, H.X. Yang, L. Liu, H. Liang, Y.Z. Yang, Mesoporous CeO2 hollowspheres prepared by Ostwald ripening and their environmental applications. Eur. Inorg. Chem. 2010, 3354–3359 (2010)Google Scholar
  208. 208.
    X.H. Lu, T. Zhai, H.N. Cui, J.Y. Shi, S.L. Xie, Y.Y. Huang, C.L. Liang, Y.X. Tong, Redox cycles promoting photocatalytic hydrogen evolution of CeO2 nanorods. J. Mater. Chem. 21, 5569–5572 (2011)Google Scholar
  209. 209.
    M. Kobune, S. Sato, R. Takahashi, Surface-structure sensitivity of CeO2 for several catalytic reactions. J. Mol. Catal. A: Chem. 279, 10–19 (2008)Google Scholar
  210. 210.
    J.G. Lv, Y. Shen, L.M. Peng, X.F. Guo, W.P. Ding, Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen. Chem. Commun. 46, 5909–5911 (2010)Google Scholar
  211. 211.
    Y. Zhang, F. Hou, Y.W. Tan, CeO2 nanoplates with a hexagonal structure and their catalytic applications in highly selective hydrogenation of substituted nitroaromatics. Chem. Commun. 48, 2391–2393 (2012)Google Scholar
  212. 212.
    I. Celardo, J.Z. Pedersen, E. Traversa, Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3, 1411–1420 (2011)ADSGoogle Scholar
  213. 213.
    C. Korsvik, S. Patil, S. Seal, W.T. Self, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 10, 1056–1058 (2007)Google Scholar
  214. 214.
    T. Pirmohamed, J.M. Dowding, S. Singh, B. Wasserman, E. Heckert, A.S. Karakoti, J.E.S. King, S. Seal, W.T. Self, Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 46, 2736–2738 (2010)Google Scholar
  215. 215.
    Y. Xue, Q.F. Luan, D. Yang, X. Yao, K.B. Zhou, Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J. Phys. Chem. C 115, 4433–4438 (2011)Google Scholar
  216. 216.
    C.K. Kim, T. Kim, I.Y. Choi, M. Soh, D. Kim, Y.-J. Kim, H. Jang, H.-S. Yang, J.Y. Kim, H.-K. Park, Ceria nanoparticles that can protect against ischemic stroke. Angew. Chem. Int. Ed. 51, 1–6 (2012)Google Scholar
  217. 217.
    J. Chen, S. Patil, S. Seal, J.F. Mcginnis, Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol. 1, 142–150 (2006)ADSGoogle Scholar
  218. 218.
    A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006)ADSGoogle Scholar
  219. 219.
    S.J. Lin, X. Wang, Z.X. Ji, C.H. Chang, Y. Dong, H. Meng, Y.P. Liao, M.Y. Wang, T.B. Song, S. Kohan, Aspect ratio plays a role in the hazard potential of CeO2 nanoparticles in mouse lung and zebrafish gastrointestinal tract. ACS Nano 8, 4450–4464 (2014)Google Scholar
  220. 220.
    W.Q. Han, W. Wen, J.C. Hanson, X. Teng, N. Marinkovic, J.A. Rodriguez, One-dimensional ceria as catalyst for the low-temperature water-gas shift reaction. J. Phys. Chem. C 113, 21949–21955 (2009)Google Scholar
  221. 221.
    C. Fang, D.S. Zhang, L.Y. Shi, R.H. Gao, H.R. Li, L.P. Ye, J.P. Zhang, Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3. Catal. Sci. Technol. 3, 803–811 (2013)Google Scholar
  222. 222.
    D. Barreca, A. Gasparotto, C. Maccato, C. Maragno, E. Tondello, E. Comini, G. Sberveglieri, Columnar CeO2 nanostructures for sensor application. Nanotechnology 18, 125502 (2007)Google Scholar
  223. 223.
    H. He, H.X. Dai, L.H. Ng, K.W. Wong, C.T. Au, Pd-, Pt-, and Rh-loaded Ce0.6Zr0.35Y0.05O2 three-way catalysts: an investigation on performance and redox properties. J. Catal. 206, 1–13 (2002)Google Scholar
  224. 224.
    X. Yu, L. Kuai, B.Y. Geng, CeO2/rGO/Pt sandwich nanostructure: rGO-Enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells. Nanoscale 4, 5738–5743 (2012)ADSGoogle Scholar
  225. 225.
    H.P. Zhou, H.S. Wu, J. Shen, A.X. Yin, L.D. Sun, C.H. Yan, Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. J. Am. Chem. Soc. 132, 4998–5011 (2010)Google Scholar
  226. 226.
    X.N. Lu, C.Y. Song, S.H. Jia, Z.S. Tong, X.L. Tang, Y.X. Teng, Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods. Catal. Commun. 8, 329–334 (2007)Google Scholar
  227. 227.
    R. Si, M. Flytzani-Stephanopoulos, Shape and crystal plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed. 47, 2884–2887 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Chun-Hua Yan
    • 1
  • Ling-Dong Sun
    • 1
  • Chao Zhang
    • 1
  • Chun-Jiang Jia
    • 2
  • Guang-Ming Lyu
    • 1
  • Hao Dong
    • 1
  • Xiao-Yu Zheng
    • 1
  • Yan-Jie Wang
    • 1
  • Shuo Shi
    • 1
  • Pei-Zhi Zhang
    • 1
  • Lin-Dong Li
    • 1
  1. 1.Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry of Molecular EngineeringPeking UniversityBeijingChina
  2. 2.School of Chemistry and Chemical EngineeringShandong UniversityJinanChina

Personalised recommendations