Skip to main content

Synthesis and Application of Solution-Based II–VI and IV–VI Semiconductor Nanowires

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Semiconductor nanowires (NWs) possess unique optical and electrical properties due to their anisotropic shape as well as their size-tunable electronic structure. In this chapter, we discuss the solution phase synthesis of II–VI and IV–VI semiconductor nanowires (e.g. ZnSe, CdS, CdSe, CdTe, PbS, PbSe, and PbSexS1−x) as well as NW-based heterostructures involving core/shell and metal nanoparticle-decorated morphologies. We subsequently discuss the application of these materials within the context of nanowire yarns, nanowire-functionalized cotton textiles, and renewable energy applications involving nanostructured solar cells and photocatalytic hydrogen generation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Zhou, H.-C. Chang, V. Protasenko, M. Kuno, A.K. Singh, D. Jena, H.G. Xing, CdSe nanowires with illumination-enhanced conductivity: induced dipoles, dielectrophoretic assembly, and field-sensitive emission. J. Appl. Phys. 101, 073704 (2007)

    Article  ADS  Google Scholar 

  2. N. Petchsang, M.P. McDonald, L.E. Sinks, M. Kuno, Light induced nanowire assembly: the electrostatic alignment of semiconductor nanowires into functional macroscopic yarns. Adv. Mater. 25, 601–605 (2013)

    Article  Google Scholar 

  3. M. Zhukovskyi, L. Sanchez-Botero, M.P. McDonald, J. Hinestroza, M. Kuno, Nanowire-functionalized cotton textiles. ACS Appl. Mater. Interfaces 6, 2262–2269 (2014)

    Article  Google Scholar 

  4. A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H.G. Xing, D. Jena, Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids. Nano Lett. 7, 2999–3006 (2007)

    Article  ADS  Google Scholar 

  5. H. Choi, M. Kuno, G.V. Hartland, P.V. Kamat, CdSe nanowire solar cells using carbazole as a surface modifier. J. Mater. Chem. A 1, 5487–5491 (2013)

    Article  Google Scholar 

  6. Z. Feng, Q. Zhang, L. Lin, H. Guo, J. Zhou, Z. Lin, ⟨0001⟩-Preferential growth of CdSe nanowires on conducting glass: template-free electrodeposition and application in photovoltaics. Chem. Mater. 22, 2705–2710 (2010)

    Article  Google Scholar 

  7. H. Choi, P.V. Kamat, CdS nanowire solar cells: dual role of squaraine dye as a sensitizer and a hole transporter. J. Phys. Chem. Lett. 4, 3983–3991 (2013)

    Article  Google Scholar 

  8. Y. Yu, P.V. Kamat, M. Kuno, A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance. Adv. Funct. Mater. 20, 1464–1472 (2010)

    Article  Google Scholar 

  9. H. Choi, J.G. Radich, P.V. Kamat, Sequentially layered CdSe/CdS nanowire architecture for improved nanowire solar cell performance. J. Phys. Chem. C 118, 206–213 (2014)

    Article  Google Scholar 

  10. P. Tongying, V.V. Plashnitsa, N. Petchsang, F. Vietmeyer, G.J. Ferraudi, G. Krylova, M. Kuno, Photocatalytic hydrogen generation efficiencies in one-dimensional CdSe heterostructures. J. Phys. Chem. Lett. 3, 3234–3240 (2012)

    Article  Google Scholar 

  11. P. Tongying, F. Vietmeyer, D. Aleksiuk, G.J. Ferraudi, G. Krylova, M. Kuno, Double heterojunction nanowire photocatalysts for hydrogen generation. Nanoscale 6, 4117–4124 (2014)

    Article  ADS  Google Scholar 

  12. Y. Yang, J. Li, H. Wu, E. Oh, D. Yu, Controlled ambipolar doping and gate voltage dependent carrier diffusion length in lead sulfide nanowires. Nano Lett. 12, 5890–5896 (2012)

    Article  ADS  Google Scholar 

  13. W. Liang, O. Rabin, A.I. Hochbaum, M. Fardy, M. Zhang, P. Yang, Thermoelectric properties of p-type PbSe nanowires. Nano Res. 2, 394–399 (2009)

    Article  Google Scholar 

  14. M. Fardy, A.I. Hochbaum, J. Goldberger, M.M. Zhang, P. Yang, Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 19, 3047–3051 (2007)

    Article  Google Scholar 

  15. R. Graham, C. Miller, E. Oh, D. Yu, Electric field dependent photocurrent decay length in single lead sulfide nanowire field effect transistors. Nano Lett. 11, 717–722 (2011)

    Article  ADS  Google Scholar 

  16. S.Y. Jang, Y.M. Song, H.S. Kim, Y.J. Cho, Y.S. Seo, G.B. Jung, C.-W. Lee, J. Park, M. Jung, J. Kim, B. Kim, J.-G. Kim, Y.-J. Kim, Three synthetic routes to single-crystalline PbS nanowires with controlled growth direction and their electrical transport properties. ACS Nano 4, 2391–2401 (2010)

    Article  Google Scholar 

  17. Y. Yang, X. Peng, D. Yu, High intensity induced photocurrent polarity switching in lead sulfide nanowire field effect transistors. Nanotechnology 25, 195202 (2014)

    Article  ADS  Google Scholar 

  18. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964)

    Article  ADS  Google Scholar 

  19. R.L. Penn, J.F. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969–971 (1998)

    Article  ADS  Google Scholar 

  20. J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Kogel, Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471–1473 (2000)

    Article  ADS  Google Scholar 

  21. T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro, Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth. Science 270, 1791–1794 (1995)

    Article  ADS  Google Scholar 

  22. H. Yu, P.C. Gibbons, K.F. Kelton, W.E. Buhro, Heterogeneous seeded growth: a potentially general synthesis of monodisperse metallic nanoparticles. J. Am. Chem. Soc. 123, 9198–9199 (2001)

    Article  Google Scholar 

  23. F. Wang, R. Tang, H. Yu, P.C. Gibbons, W.E. Buhro, Size- and shape-controlled synthesis of bismuth nanoparticles. Chem. Mater. 20, 3656–3662 (2008)

    Article  Google Scholar 

  24. H. Yu, J. Li, R.A. Loomis, L.-W. Wang, W.E. Buhro, Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Nat. Mater. 2, 517–520 (2003)

    Article  ADS  Google Scholar 

  25. H. Yu, W.E. Buhro, Solution–liquid–solid growth of soluble GaAs nanowires. Adv. Mater. 15, 416–419 (2003)

    Article  Google Scholar 

  26. H. Yu, J. Li, R.A. Loomis, P.C. Gibbons, L.-W. Wang, W.E. Buhro, Cadmium selenide quantum wires and the transition from 3D to 2D confinement. J. Am. Chem. Soc. 125, 16168–16169 (2003)

    Article  Google Scholar 

  27. J.W. Grebinski, K.L. Richter, J. Zhang, T.H. Kosel, M. Kuno, Synthesis and characterization of Au/Bi core/shell nanocrystals: a precursor toward II–VI nanowires. J. Phys. Chem. B 108, 9745–9751 (2004)

    Article  Google Scholar 

  28. D.D. Fanfair, B.A. Korgel, Bismuth nanocrystal-seeded III-V semiconductor nanowire synthesis. Cryst. Growth Des. 5, 1971–1976 (2005)

    Article  Google Scholar 

  29. Z. Li, A. Kornowski, A. Myalitsin, A. Mews, Formation and function of bismuth nanocatalysts for the solution–liquid–solid synthesis of CdSe nanowires. Small 4, 1698–1702 (2008)

    Article  Google Scholar 

  30. J. Puthussery, T.H. Kosel, M. Kuno, Facile synthesis and size control of II-VI nanowires using bismuth salts. Small 5, 1112–1116 (2009)

    Article  Google Scholar 

  31. J.W. Grebinski, K.L. Hull, J. Zhang, T.H. Kosel, M. Kuno, Solution-based straight and branched CdSe nanowires. Chem. Mater. 16, 5260–5272 (2004)

    Article  Google Scholar 

  32. M. Kuno, O. Ahmad, V. Protasenko, D. Bacinello, T.H. Kosel, Solution-based straight and branched CdTe nanowires. Chem. Mater. 18, 5722–5732 (2006)

    Article  Google Scholar 

  33. Z. Li, Ö. Kurtulus, N. Fu, Z. Wang, A. Kornowski, U. Pietsch, A. Mews, Controlled synthesis of CdSe nanowires by solution–liquid–solid method. Adv. Funct. Mater. 19, 3650–3661 (2009)

    Article  Google Scholar 

  34. F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, W.E. Buhro, Solution–liquid–solid growth of semiconductor nanowires. Inorg. Chem. 45, 7511–7521 (2006)

    Article  Google Scholar 

  35. A. Dong, F. Wang, T.L. Daulton, W.E. Buhro, Solution–liquid–solid (SLS) growth of ZnSe–ZnTe quantum wires having axial heterojunctions. Nano Lett. 7, 1308–1313 (2007)

    Article  ADS  Google Scholar 

  36. D.D. Fanfair, B.A. Korgel, Twin-related branching of solution-grown ZnSe nanowires. Chem. Mater. 19, 4943–4948 (2007)

    Article  Google Scholar 

  37. N. Petchsang, L. Shapoval, F. Vietmeyer, Y. Yu, J.H. Hodak, I.M. Tang, T.H. Kosel, M. Kuno, Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires. Nanoscale 3, 3145–3151 (2011)

    Article  ADS  Google Scholar 

  38. M.L. Steigerwald, C.R. Sprinkle, Application of phosphine tellurides to the preparation of Group II-VI (2–16) semiconductor materials. Organometallics 7, 245–246 (1988)

    Article  Google Scholar 

  39. C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Article  Google Scholar 

  40. M. Kuno, An overview of solution-based semiconductor nanowires: synthesis and optical studies. Phys. Chem. Chem. Phys. 10, 620–639 (2008)

    Article  Google Scholar 

  41. M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, T. Katsuyama, Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn. J. Appl. Phys. 31, 2061–2065 (1992)

    Article  ADS  Google Scholar 

  42. Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, S. Hark, Size-dependent periodically twinned ZnSe nanowires. Adv. Mater. 16, 1436–1440 (2004)

    Article  Google Scholar 

  43. K.L. Hull, J.W. Grebinski, T.H. Kosel, M. Kuno, Induced branching in confined PbSe nanowires. Chem. Mater. 17, 4416–4425 (2005)

    Article  Google Scholar 

  44. K.-T. Yong, Y. Sahoo, K.R. Choudhury, M.T. Swihart, J.R. Minter, P.N. Prasad, Control of the morphology and size of PbS nanowires using gold nanoparticles. Chem. Mater. 18, 5965–5972 (2006)

    Article  Google Scholar 

  45. J. Sun, W.E. Buhro, The use of single-source precursors for the solution–liquid–solid growth of metal sulfide semiconductor nanowires. Angew. Chem. Int. Ed. 47, 3215–3218 (2008)

    Article  Google Scholar 

  46. A.C. Onicha, N. Petchsang, T.H. Kosel, M. Kuno, Controlled synthesis of compositionally tunable ternary PbSexS1–x as well as binary PbSe and PbS nanowires. ACS Nano 6, 2833–2843 (2012)

    Article  Google Scholar 

  47. J.K. Hyun, S. Zhang, L.J. Lauhon, Nanowire heterostructures. Annu. Rev. Mater. Res. 43, 451–479 (2013)

    Article  ADS  Google Scholar 

  48. Z. Li, X. Ma, Q. Sun, Z. Wang, J. Liu, Z. Zhu, S.Z. Qiao, S.C. Smith, G.M. Lu, A. Mews, Synthesis and characterization of colloidal core–shell semiconductor nanowires. Eur. J. Inorg. Chem. 27, 4325–4331 (2010)

    Google Scholar 

  49. J.A. Goebl, R.W. Black, J. Puthussery, J. Giblin, T.H. Kosel, M. Kuno, Solution-based II–VI core/shell nanowire heterostructures. J. Am. Chem. Soc. 130, 14822–14833 (2008)

    Article  Google Scholar 

  50. S. Schäfer, A. Reich, Z. Wang, T. Kipp, A. Mews, Charge separation in CdSe/CdTe hetero-nanowires measured by electrostatic force microscopy. Appl. Phys. Lett. 100, 022110 (2012)

    Article  ADS  Google Scholar 

  51. S. Kim, B. Fisher, H.-J. Eisler, M. Bawendi, Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466–11467 (2003)

    Article  Google Scholar 

  52. X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029 (1997)

    Article  Google Scholar 

  53. M.A. Hines, P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996)

    Article  Google Scholar 

  54. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997)

    Article  Google Scholar 

  55. R. Costi, A.E. Saunders, U. Banin, Colloidal hybrid nanostructures: a new type of functional materials. Angew. Chem. Int. Ed. 49, 4878–4897 (2010)

    Article  Google Scholar 

  56. A. Vaneski, A.S. Susha, J. Rodríguez-Fernández, M. Berr, F. Jäckel, J. Feldmann, A.L. Rogach, Hybrid colloidal heterostructures of anisotropic semiconductor nanocrystals decorated with noble metals: synthesis and function. Adv. Funct. Mater. 21, 1547–1556 (2011)

    Article  Google Scholar 

  57. U. Banin, Y. Ben-Shahar, K. Vinokurov, Hybrid semiconductor–metal nanoparticles: from architecture to function. Chem. Mater. 26, 97–110 (2014)

    Article  Google Scholar 

  58. P. Guo, J. Xu, X. Zhuang, W. Hu, X. Zhu, H. Zhou, L. Tang, A. Pan, Surface plasmon resonance enhanced band-edge emission of CdS–SiO2 core–shell nanowires with gold nanoparticles attached. J. Mater. Chem. C 1, 566–571 (2013)

    Article  Google Scholar 

  59. X. Peng, J. Wickham, A.P. Alivisatos, Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc. 120, 5343–5344 (1998)

    Article  Google Scholar 

  60. D.V. Talapin, A.L. Rogach, M. Haase, H. Weller, Evolution of an ensemble of nanoparticles in a colloidal solution: theoretical study. J. Phys. Chem. B 105, 12278–12285 (2001)

    Article  Google Scholar 

  61. D.V. Talapin, H. Yu, E.V. Shevchenko, A. Lobo, C.B. Murray, Synthesis of colloidal PbSe/PbS core–shell nanowires and PbS/Au nanowire–nanocrystal heterostructures. J. Phys. Chem. C 111, 14049–14054 (2007)

    Article  Google Scholar 

  62. I. Jen-La Plante, S.E. Habas, B.D. Yuhas, D.J. Gargas, T. Mokari, Interfacing metal nanoparticles with semiconductor nanowires. Chem. Mater. 21, 3662–3667 (2009)

    Article  Google Scholar 

  63. G. Menagen, J.E. Macdonald, Y. Shemesh, I. Popov, U. Banin, Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms. J. Am. Chem. Soc. 131, 17406–17411 (2009)

    Article  Google Scholar 

  64. S.E. Habas, P. Yang, T. Mokari, Selective growth of metal and binary metal tips on CdS nanorods. J. Am. Chem. Soc. 130, 3294–3295 (2008)

    Article  Google Scholar 

  65. Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001)

    Article  ADS  Google Scholar 

  66. A. Theron, E. Zussman, A.L. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12, 384–390 (2001)

    Article  ADS  Google Scholar 

  67. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3, 1229–1233 (2003)

    Article  ADS  Google Scholar 

  68. S. Schäfer, Z. Wang, R. Zierold, T. Kipp, A. Mews, Laser-induced charge separation in CdSe nanowires. Nano Lett. 11, 2672–2677 (2011)

    Article  Google Scholar 

  69. J. Giblin, M. Syed, M.T. Banning, M. Kuno, G. Hartland, Experimental determination of single CdSe nanowire absorption cross sections through photothermal imaging. ACS Nano 4, 358–364 (2010)

    Article  Google Scholar 

  70. V. Protasenko, D. Bacinello, M. Kuno, Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires. J. Phys. Chem. B 110, 25322–25331 (2006)

    Article  Google Scholar 

  71. J. Giblin, M. Kuno, Nanostructure absorption: a comparative study of nanowire and colloidal quantum dot absorption cross sections. J. Phys. Chem. Lett. 1, 3340–3348 (2010)

    Article  Google Scholar 

  72. I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005)

    Article  ADS  Google Scholar 

  73. V.I. Klimov, Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000)

    Article  Google Scholar 

  74. A. Wood, M. Giersig, P. Mulvaney, Fermi level equilibration in quantum dot–metal nanojunctions. J. Phys. Chem. B 105, 8810–8815 (2001)

    Article  Google Scholar 

  75. J.U. Bang, S.J. Lee, J.S. Jang, W. Choi, H. Song, Geometric effect of single or double metal-tipped CdSe nanorods on photocatalytic H2 generation. J. Phys. Chem. Lett. 3, 3781–3785 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

PT thanks the Royal Thai Government Scholarship for financial support. MZ thanks the Notre Dame Innovation Postdoc Fund and ND Energy for financial support. MK thanks the NSF (CHE1208091) for financial support. We thank Rusha Chatterjee for assistance in editing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maksym Zhukovskyi or Masaru Kuno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tongying, P., Zhukovskyi, M., Kuno, M. (2015). Synthesis and Application of Solution-Based II–VI and IV–VI Semiconductor Nanowires. In: Li, Q. (eds) Anisotropic Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18293-3_4

Download citation

Publish with us

Policies and ethics