Skip to main content

Hyperbolic Metamaterials: Design, Fabrication, and Applications of Ultra-Anisotropic Nanomaterials

  • Chapter
  • First Online:
Anisotropic Nanomaterials

Abstract

Hyperbolic metamaterial (HMM) is a non-magnetic extremely anisotropic nanostructure that cannot be found in nature at optical frequencies having an open hyperboloid iso-frequency surface. Interestingly, these anisotropic media support highly confined wavevector modes (high-k modes) in addition to surface plasmon modes within the structure due to hyperbolic dispersion. The high-k modes in an anisotropic hyperbolic metamaterials are conventionally refereed to as volume plasmon polaritons (VPPs) or bulk Bloch plasmon polaritons (BPPs) . Since BPPs are highly confined within the entire structure, the excitation, collection and control those modes at optical frequencies are very challenging. Here, the focus will be on the excitation and collection of bulk plasmon polaritons from anisotropic hyperbolic metamaterials at optical frequencies using the grating coupling principle. In this chapter, the basic properties of hyperbolic metamaterials are first introduced. Then we give a comprehensive overview, describing on design, fabrication and characterization of grating coupled anisotropic hyperbolic metamaterials (GCAHMs) in a wide wavelength range, from visible to near infrared. Numerical simulation results supporting the obtained experimental data are also presented. Finally, we describe potential applications of GCAHMs in photonics and bio-medical research with concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photon. 7, 948–957 (2013)

    Article  ADS  Google Scholar 

  2. H.N.S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V.M. Menon, Topological transitions in metamaterials. Science 336, 205–209 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  3. K.V. Sreekanth, T. Biaglow, G. Strangi, Directional spontaneous emission enhancement in hyperbolic metamaterials. J. Appl. Phys. 114, 134306 (2013)

    Article  ADS  Google Scholar 

  4. A. Ono, J.I. Kato, S. Kawat, Subwavelength optical imaging through a metallic nanorod array. Phys. Rev. Lett. 95, 267407 (2005)

    Article  ADS  Google Scholar 

  5. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007)

    Article  ADS  Google Scholar 

  6. A.J. Hoffman et al., Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007)

    Article  ADS  Google Scholar 

  7. K.V. Sreekanth, A. De Luca, G. Strangi, Negative refraction in graphene-based hyperbolic metamaterials. Appl. Phys. Lett. 103, 023107 (2013)

    Article  ADS  Google Scholar 

  8. A.V. Kabashin et al., Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009)

    Article  ADS  Google Scholar 

  9. D. Artigas, L. Torner, Dyakonov surface waves in photonic metamaterials. Phys. Rev. Lett. 94, 013901 (2005)

    Article  ADS  Google Scholar 

  10. Z. Jacob, I.I. Smolyaninov, E.E. Narimanov, Broadband purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100, 181105 (2012)

    Article  ADS  Google Scholar 

  11. J. Schilling, Uniaxial metallo-dielectric metamaterials with scalar positive permeability. Phys. Rev. E 74, 046618 (2006)

    Article  ADS  Google Scholar 

  12. X. Ni, S. Ishii, M.D. Thoreson, V.M. Shalaev, S. Han, S. Lee, A.V. Kildishev, Loss-compensated and active hyperbolic metamaterials. Opt. Exp. 19, 25242–25254 (2011)

    Article  ADS  Google Scholar 

  13. I. Avrutsky, I. Salakhutdinov, J. Elser, V. Podolskiy, Highly confined optical modes in nanoscale metal-dielectric multilayers. Phys. Rev. B 75, 241402 (2007)

    Article  ADS  Google Scholar 

  14. S.V. Zhukovsky, O. Kidwai, J.E. Sipe, Physical nature of volume plasmon polaritons in hyperbolic metamaterials. Opt. Exp. 21, 14982–14987 (2013)

    Article  Google Scholar 

  15. Z. Shi, G. Piredda, A.C. Liapis, M.A. Nelson, L. Novotny, R.W. Boyd, Surface-plasmon polaritons on metal-dielectric nanocomposite films. Opt. Lett. 34, 3535–3537 (2009)

    Article  ADS  Google Scholar 

  16. S. Ishil, A.V. Kildishev, E. Narimanov, V.M. Shalaev, V.P. Drachev, Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. Laser Photonics Rev. 7, 265–271 (2013)

    Article  Google Scholar 

  17. K.V. Sreekanth, A. De Luca, G. Strangi, Experimental demonstration of surface and bulk plasmon polaritons in hypergratings. Sci. Rep. 3, 3291 (2013)

    Article  ADS  Google Scholar 

  18. C.L. Cortes, W. Newman, S. Molesky, Z. Jacob, Quantum nanophotonics using hyperbolic metamaterials. J. Opt. 14, 063001 (2013)

    Article  ADS  Google Scholar 

  19. E.D. Palik, Handbook of Optical Constants of Solids, Orlando (Academic, Orlando, 1985)

    Google Scholar 

  20. W. Yan, L. Shen, L. Ran, J.A. Kong, Surface modes at the interfaces between isotropic media and indefinite media. J. Opt. Soc. Am. A: 24, 530–535 (2007)

    Article  ADS  Google Scholar 

  21. K.V. Sreekanth, A. De Luca, G. Strangi, Excitation of volume plasmon polaritons in metal-dielectric metamaterials using 1D and 2D diffraction gratings. J. Opt. 16, 105103 (2014)

    Article  ADS  Google Scholar 

  22. K.V. Sreekanth, K.K. Hari, A. De Luca, G. Strangi, Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials. Sci. Rep. 3, 3291 (2014)

    Google Scholar 

  23. D. Lu, J.J. Kan, E.E. Fullerton, Z. Liu, Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotech. 9, 48–53 (2014)

    Article  ADS  Google Scholar 

  24. G.W. Ford, W.H. Weber, Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 105, 227403 (1984)

    Google Scholar 

  25. W.D. Newman, C.L. Cortes, Z. Jacob, Enhanced and directional single-photon emission in hyperbolic metamaterials. J. Opt. Soc. Am. B 30, 766–775 (2013)

    Article  ADS  Google Scholar 

  26. A. Husakou, J. Herrmann, Steplike transmission of light through a metal dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant. Phys. Rev. Lett. 99, 127402 (2007)

    Article  ADS  Google Scholar 

  27. J.M. Drake, M.L. Lesiecki, J. Sansregret, W.R.L. Thomas, Organic dyes in PMMA in a planar luminescent solar collector: a performance evaluation. Appl. Opt. 21, 2945 (1982)

    Article  ADS  Google Scholar 

  28. J.S. Bouillard, S. Vilain, W. Dickson, G.A. Wurtz, A.V. Zayats, Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp. Sci. Rep. 2, 829 (2012)

    Article  ADS  Google Scholar 

  29. S. Zeng, D. Baillargeat, H.P. Hod, K.T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 43, 3426–3452 (2014)

    Article  Google Scholar 

  30. U.A. Gurkan et al., Controlled viable release of selectively captured label-free cells in microchannels. Lab Chip 11, 3979 (2011)

    Article  Google Scholar 

  31. R.C. Weast, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1987)

    Google Scholar 

  32. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators B 54, 3 (1999)

    Article  Google Scholar 

  33. P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Surface-enhanced raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008)

    Article  Google Scholar 

  34. B. Lounis, M. Orrit, Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge support of the Ohio Third Frontier Project ‘‘Research Cluster on Surfaces in Advanced Materials (RC-SAM) at Case Western Reserve University’’. The research leading to these results has received funding partially from the Italian Project “NanoLase”—PRIN 2012, protocol number 2012JHFYMC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Strangi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sreekanth, K.V., De Luca, A., Strangi, G. (2015). Hyperbolic Metamaterials: Design, Fabrication, and Applications of Ultra-Anisotropic Nanomaterials. In: Li, Q. (eds) Anisotropic Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18293-3_12

Download citation

Publish with us

Policies and ethics