Skip to main content

Silicon Nanowires: Fabrication and Applications

  • Chapter
  • First Online:
Anisotropic Nanomaterials

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Due to the high surface to volume silicon ratio and unique quasi one-dimensional electronic structure, silicon nanowire based devices have properties that can outperform their traditional counterparts in many ways. To fabricate silicon nanowires, in principle there are a variety of different approaches. These can be classified into top-down and bottom-up methods. The choice of fabrication method is strongly linked to the target application. From an application point of view, electron devices based on silicon nanowires are a natural extension of the downscaling of a silicon metal insulator semiconductor transistor. However, the unique properties also allow implementing new device concepts like the junctionless transistor and new functionalities like reconfigurability on the device level. Sensor devices may benefit from the high surface to volume ratio leading to a very high sensitivity of the device. Also, solar cells and anodes in Li-ion batteries can be improved by exploiting the quasi one-dimensionality. This chapter will give a review on the state-of-the-art of silicon nanowire fabrication and their application in different types of devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Mikolajick, A. Heinzig, J. Trommer, S. Pregl, M. Grube, G. Cuniberti, W.M. Weber, Silicon nanowires—a versatile technology platform. Phys. Status Solidi Rapid Res. Lett. 7, 793–799 (2013)

    ADS  Google Scholar 

  2. N. Singh, K.D. Buddharaju, A. Agarwal, S.C. Rustagi, C.Q. Lo, N. Balasubramanian, D.L. Kwong, Fully gate-all-around silicon nanowire CMOS devices. Solid State Tech. 51, 34 (2008)

    Google Scholar 

  3. J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neil, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, R. Murphy, Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010)

    ADS  Google Scholar 

  4. M.T. Björk, J. Knoch, H. Schmid, H. Riel, W. Riess, Silicon nanowire tunneling field-effect transistors. Appl. Phys. Lett. 92, 193504 (2008)

    ADS  Google Scholar 

  5. W.M. Weber, A. Heinzig, J. Trommer, D. Martin, M. Grube, T. Mikolajick, Reconfigurable nanowire electronics—a review. Solid State Electron. 102, 12–24 (2014)

    ADS  Google Scholar 

  6. J. Izuan, A. Rashid, J. Abdullah, N.A. Yusof, R. Hajia, The development of silicon nanowire as sensing material and its applications. J. Nanomater. 2013, 328093–32119 (2013)

    Google Scholar 

  7. F. Patolsky, C.M. Lieber, Nanowire nanosensors. Mater. Today 8, 20–28 (2005)

    Google Scholar 

  8. M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010)

    ADS  Google Scholar 

  9. K.-Q. Peng, X. Wang, L. Li, Y. Hu, S.-T. Lee, Silicon nanowires for advanced energy conversion and storage. Nano Today 8, 75–97 (2013)

    Google Scholar 

  10. C. Mack, The future of semiconductor lithography? Look to flash. J. Micro/Nanolith. MEMS MOEMS 12, 030101 (2013)

    ADS  Google Scholar 

  11. V. Schmidt, J.V. Wittemann, S. Senz, U. Goesele, Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 21, 2681–2702 (2009)

    Google Scholar 

  12. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964)

    ADS  Google Scholar 

  13. W. Weber et al., Silicon nanowires: catalytic growth and electrical characterization. Phys. Stat. Sol. (b) 243, 3340–33451-6 (2006)

    Google Scholar 

  14. F. Iacopi, P.M. Vereecken, M. Schaekers, M. Caymax, N. Moelans, B. Blanpain, O. Richard, C. Detavernier, H. Griffiths, Plasma-enhanced chemical vapour deposition growth of Si nanowires with low melting point metal catalysts: an effective alternative to Au-mediated growth. Nanotechnology 18, 505307 (2007)

    Google Scholar 

  15. I. Zardo, S. Conesa-Boj, S. Estradé, L. Yu, F. Peiro, P. Roca i Cabarrocas, J.R. Morante, J. Arbiol, A. Fontcuberta i Morral, Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition. Appl. Phys. A 100, 287–296 (2010)

    Google Scholar 

  16. O. Moutanabbir, D. Isheim, H. Blumtritt, S. Senz, E. Pippel, D.N. Seidman, Colossal injection of catalyst atoms into silicon nanowires. Nature 496, 78–82 (2013)

    ADS  Google Scholar 

  17. E.I. Givargizov, Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20 (1975)

    ADS  Google Scholar 

  18. A.M. Morales, C.M.L. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998)

    ADS  Google Scholar 

  19. V. Schmidt, S. Senz, U. Gösele, Diameter dependent growth direction of epitaxial silicon nanowires. Nano Lett. 5, 931–935 (2005)

    ADS  Google Scholar 

  20. Y. Cui, L.J. Lauhon, M. Gudiksen, J. Wang, C.M. Lieber, Diameter controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2011)

    ADS  Google Scholar 

  21. A.V. Sandulova, P.S. Bogoyavlenskii, M.I. Dronyuk, Preparation and some properties of whisker and needle-shaped single crystals of germanium, silicon and their solid solutions. Sov. Phys.-Sol. State 5, 1883 (1964)

    Google Scholar 

  22. Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee, Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett. 72, 1835–1837 (1998)

    ADS  Google Scholar 

  23. P. Werner, N.D. Zakharov, G. Gerth, L. Schubert, U. Gosele, On the formation of Si nanowires by molecular beam epitaxy. Int. J. Mat. Res. 97, 1008–1015 (2006)

    Google Scholar 

  24. F.-L. Yang, D.-H. Lee, H.-Y. Chen, C.-Y. Chang, S.-D Liu, C.-C. Huang, T.-X. Chung, H.-W. Chen, C.-C. Huang, Y.-H. Liu, C.-C. Wu, C.-C. Chen, S.-C. Chen, Y.-T. Chen, Y.-H. Chen, C.-J. Chen, B.-W. Chan, P.-F. Hsu, J.-H. Shieh, H.-J. Tao, Y.-C. Yeo, Y. Li, J.-W. Lee, P. Chen, M.-S. Liang, C. Hu, 5 nm-Gate nanowire FinFET. IEEE Symposium VLSI Technology, pp. 196–197 (2004)

    Google Scholar 

  25. D. Sacchetto, M.H. Ben-Jamaa, G. De Micheli, Y. Leblebici, Fabrication and characterization of vertically stacked gate-all-around Si nanowire FET arrays. IEEE Proceedings European Solid State Device Research Conference ESSDERC, pp. 245–248 (2009)

    Google Scholar 

  26. C. Pan, Z. Luo, C. Xu, J. Luo, R. Liang, G. Zhu, W. Wu, W. Guo, X. Yan, J. Xu, Z.L. Wang, J. Zhu, Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si1–xGex wires: fabrication, characterization, and photovoltaic application. ACS Nano 5(8), 6629–6636 (2011)

    Google Scholar 

  27. J. Nakamura, K. Higuchi, K. Maenaka, Vertical Si nanowire with ultra-high-aspect-ratio by combined top-down processing technique. Microsyst. Tech. 19, 433–438 (2013)

    Google Scholar 

  28. J. Goldberger, A.I. Hochbaum, R. Fan, P. Yang, Silicon vertically integrated nanowire field effect transistors. Nano Lett. 6, 973–977 (2006)

    Google Scholar 

  29. H. Shang, G. Cao, Template-based synthesis of nanorod or nanowire arrays. Handbook of Nanotechnology, pp. 161–178 (Springer, New York, 2007)

    Google Scholar 

  30. H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata, M. Kito, Y. Fukuzumi, M. Sato, Y. Nagata, Y. Matsuoka, Y. Iwata, H. Aochi, A. Nitayama, Bit cost scalable technology with punch and plug process for ultra high density flash memory. IEEE Symposium VLSI Technology, pp. 14–15 (2007)

    Google Scholar 

  31. R.G. Hobbs, N. Petkov, J.D. Holmes, Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem. Mater. 24, 1975–1991 (2012)

    Google Scholar 

  32. M.C.P. Wang, B.D. Gates, Directed assembly of nanowires. Mater. Today 12, 34–43 (2009)

    Google Scholar 

  33. C.H. Lee, D.R. Kim, X. Zheng, Orientation-controlled alignment of axially modulated pn silicon nanowires. Nano Lett. 10, 5116–5122 (2010)

    ADS  Google Scholar 

  34. E.M. Freer, O. Grachev, X. Duan, S. Martin, D.P. Stumbo, High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat. Nanotechnol. 5, 525–530 (2010)

    ADS  Google Scholar 

  35. S. Raychaudhuri, S.A. Dayeh, D. Wang, E.T. Yu, Precise semiconductor nanowire placement through dielectrophoresis. Nano Lett. 9, 2260–2266 (2009)

    ADS  Google Scholar 

  36. Y. Huang, X. Duan1, Q. Wei, C.M. Lieber. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001)

    ADS  Google Scholar 

  37. Z. Fan, J.C. Ho, Z.A. Jacobson, R. Yerushalmi, R.L. Alley, H. Razavi, A. Javey, Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8, 20–25 (2008)

    ADS  Google Scholar 

  38. S. Pregl, W.M. Weber, D. Nozaki, J. Kunstmann, L. Baraban, J. Opitz, T. Mikolajick, G. Cuniberti, Parallel arrays of Schottky barrier nanowire field effect transistors: nanoscopic effects for macroscopic current output. Nano Res. 6, 381–388 (2013)

    Google Scholar 

  39. D. Whang, S. Jin, Y. Wu, C.M. Lieber, Nano Lett. 3, 1255–1259 (2003)

    ADS  Google Scholar 

  40. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Nano Lett. 3, 1229–1233 (2003)

    ADS  Google Scholar 

  41. S. Acharya, A.B. Panda, N. Belman, S. Efrima, Y. Golan, A semiconductor-nanowire assembly of ultrahigh junction density by the Langmuir-Blodgett technique. Adv. Mater. 18, 210–213 (2006)

    Google Scholar 

  42. J. Yao, C.M. Lieber, A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8, 329–335 (2013)

    ADS  Google Scholar 

  43. S.T. Picraux, S.A. Dayeh, P. Manandhar, D.E. Perea, S.G. Choi, Silicon and germanium nanowires: growth, properties, and integration. JOM 62, 35–43 (2010)

    Google Scholar 

  44. J. Wallentin, M.T. Borgström, Doping of semiconductor nanowires. J. Mater. Res. 26, 2142–2156 (2011)

    ADS  Google Scholar 

  45. V. Robbins, D. Taylor, C. Wanqing, A. Fischer-Colbrie, P. Chungdee, S. Ahmed, D. Stumbo, VLS growth of Si nanowires with in-situ doping for MOS transistors. IEEE-NANO Conference Nanotechnology, pp. 326–329 (2009)

    Google Scholar 

  46. H. Park, R. Beresford, R. Ha, H.-J. Choi, H. Shin, J. Xu, Evaluation of metal–nanowire electrical contacts by measuring contact end resistance. Nanotech. 23, 245201 (2012)

    ADS  Google Scholar 

  47. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire field effect transistors. Nano Lett. 3, 149–152 (2003)

    ADS  Google Scholar 

  48. W.M. Weber, L. Geelhaar, E. Unger, C. Chèze, F. Kreupl, H. Riechert, P. Lugli, Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics. Phys. Status Solidi (b) 244, 4170–4175 (2006)

    ADS  Google Scholar 

  49. W.M. Weber, L. Geelhaar, A.P. Graham, E. Unger, G.S. Duesberg, M. Liebau, W. Pamler, C. Chèze, H. Riechert, P. Lugli, F. Kreupl, Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 6, 2660–2666 (2006)

    ADS  Google Scholar 

  50. W. Tang, B.M. Nguyen, R. Chen, S.A. Dayeh, Solid-state reaction of nickel silicide and germanide contacts to semiconductor nanochannels. Semicond. Sci. Technol. 29, 054004 (2014)

    ADS  Google Scholar 

  51. A.I. Kingon, J.-P. Maria, S.K. Streiffer, Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 406, 1032–1038 (2000)

    Google Scholar 

  52. A. Heinzig, S. Slesazeck, F. Kreupl, T. Mikolajick, W.M. Weber, Nano Lett. 12, 119–124 (2012)

    ADS  Google Scholar 

  53. S.T. Chandra, N.B. Balamurugan, Performance analysis of silicon nanowire transistors considering effective oxide thickness of high-k gate dielectric. J. Semicond. 35, 044001-1 (2014)

    ADS  Google Scholar 

  54. P. Hashemi, J.T. Teherani, J.L.Hoyt, Investigation of hole mobility in gate-all-around Si nanowire p-MOSFETs with high-к/metal-gate: effects of hydrogen thermal annealing and nanowire shape. IEEE International Electron Devices Meeting (IEDM), Digest Technology Papers, pp. 34.5.1–34.5.4 (2010)

    Google Scholar 

  55. J.W. Sleight, S. Bangsaruntip, G. Cohen, A. Majumdar, Y. Zhang, S. Engelmann, N. Fuller, L. Gignac, S. Mittal, J. Newbury, T. Barwicz, M.M. Frank, M. Guillorn, High performance and highly uniform metal Hi-K gate-all-around silicon nanowire MOSFETs. ECS Trans. 28, 179–189 (2010)

    Google Scholar 

  56. B.R. Dorvel, B. Reddy Jr, J. Go, C.D. Guevara, E. Salm, M.A. Alam, R. Bashir, Silicon nanowires with high-k hafnium oxide dielectrics for sensitive detection of small nucleic acid oligomers. ACS Nano 6, 6150–6164 (2012)

    Google Scholar 

  57. X. Zhu, D. Gu, Q. Li, D.E. Ioannou, H. Baumgart, J.S. Suehle, C.A. Richter, Silicon nanowire NVM with high-k gate dielectric stack. Microelectron. Eng. 8, 1957–1960 (2009)

    Google Scholar 

  58. Y.M. Niquet, A. Lherbier, N.H. Quang, M.V. Fernández-Serra, X. Blase, C. Delerue, Electronic structure of semiconductor nanowires. Phys. Rev. B 73, 165319 (2006)

    ADS  Google Scholar 

  59. D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, S.T. Lee, Small-diameter silicon nanowire surfaces. Science 299, 1874–1877 (2003)

    ADS  Google Scholar 

  60. K.J. Kuhn, Considerations for ultimate CMOS scaling. IEEE Trans. Electron Devices 59, 1813–1828 (2012)

    ADS  Google Scholar 

  61. C.P. Auth, J.D. Plummer, Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET’s. IEEE Electron Device Lett. 18, 74 (1997)

    ADS  Google Scholar 

  62. J. Knoch, M.T. Björk, H. Riel, H. Schmidt, W. Riess, One-dimensional nanoelectronic devices—towards the quantum capacitance limit. IEEE Proceedings Device Research Conference, pp. 173–176 (2008)

    Google Scholar 

  63. S. Bangsaruntip, A. Majumdar, G.M. Cohen, S.U. Engelmann, Y. Zhang, M. Guillorn, L.M. Gignac, S. Mittal, W.S. Graham, E.A. Joseph, D.P. Klaus, J. Chang, E.A. Cartier, J.W. Sleight, Gate-all-around silicon nanowire 25-stage CMOS ring oscillators with diameter down to 3 nm. IEEE Symposium VLSI Technology, pp. 21–22 (2010)

    Google Scholar 

  64. S.C. Rustagi, N. Singh, W.W. Fang, K.D. Buddharaju, S.R. Omampuliyur, S.H.G. Teo, C.H. Tung, G.Q. Lo, N. Balasubramanian, D.L. Kwong, CMOS inverter based on gate-all-around silicon-nanowire MOSFETs fabricated using top-down approach. Electron Device Lett. 28, 1021–1024 (2011)

    ADS  Google Scholar 

  65. T. Mikolajick, M. Specht, N. Nagel, T. Mueller, S. Riedel, F. Beug, T. Melde, K.-H. Küsters, The future of charge trapping memories. Proceedings VLSI-TSA, pp. 130–133 (2007)

    Google Scholar 

  66. M. Specht, R. Kömmling, F. Hofmann, V. Klandzievski, L. Dreeskornfeld, W. Weber, J. Kretz, E. Landgraf, T. Schulz, J. Hartwich, W. Rösner, M. Städele, R.J. Luyken, H. Reisinger, A. Graham, E. Hartmann, L. Risch, Novel dual bit tri-gate charge-trapping memory devices. IEEE Electron Device Lett. 25, 810 (2004)

    ADS  Google Scholar 

  67. B. Prince, Vertical 3D Memory Technologies (Wiley, Chichester, 2014)

    Google Scholar 

  68. Forward Insights, How 3D NAND stacks up, Report No. FI-NFL-3DM-0114 2014

    Google Scholar 

  69. J. Fu, Y. Jiang, N. Singh, C.X. Zhu, G.Q. Lo, D.L. Kwong, Polycrystalline Si nanowire SONOS nonvolatile memory cell fabricated on a gate-all-around (GAA) channel architecture. IEEE Electron Device Lett. 30, 246–249 (2009)

    ADS  Google Scholar 

  70. M. Ishiduki, Y. Fukuzumi, R. Katsumata, M. Kito, M. Kido, H. Tanaka, Optimal device structure for pipe-shaped BiCS flash memory for ultra high density storage device with excellent performance and reliability. IEEE International Electron Devices Meeting (IEDM) Technology Digest, pp. 625–628 (2009)

    Google Scholar 

  71. K.-T. Park et al., Three-dimensional 128 Gb MLC vertical NAND flash-memory with 24-WL stacked layers and 50 MB/s high-speed programming. IEEE International Solid-State Circuits Conference (ISSCC) Digest Technology Papers, pp. 334–335 (2014)

    Google Scholar 

  72. A. Nitayama, H. Aochi, Bit cost scalable (BiCS) technology for future ultra high density memories. International Symposium VLSI Technology, Systems, and Applications (VLSI-TSA), pp. 1–2 (2013)

    Google Scholar 

  73. T. Mikolajick, H. Ryssel, Influence of statistical dopant fluctuations on MOS transistors with deep submicron channel lengths. Microelectron. Eng. 21, 419–422 (1993)

    Google Scholar 

  74. T. Mikolajick, V. Häublein, H. Ryssel, The effect of random dopant fluctuations on the minimum channel length of short-channel MOS transistors. Appl. Phys. A 64, 555–560 (1997)

    ADS  Google Scholar 

  75. M. Diarra, Y.-M. Niquet, C. Delerue, G. Allan, Ionization energy of donor and acceptor impurities in semiconductor nanowires; importance of dielectric confinement. Phys. Rev. B 75, 045301 (2007)

    ADS  Google Scholar 

  76. M.T. Björk, H. Schmid, J. Knoch, H. Riel, W. Riess, Donor deactivation in silicon nanostructures. Nat. Nanotech. 4, 103–107 (2009)

    ADS  Google Scholar 

  77. S.M. Koo, M.D. Edelstein, Q. Li, C.A. Richter, E.M. Vogel, Silicon nanowires as enhancement mode Schottky barrier field effect transistors. Nanotech. 16, 1482–1485 (2005)

    Google Scholar 

  78. J. Knoch, J. Appenzeller, Impact of the channel thickness on the performance of Schottky barrier metal–oxide–semiconductor field-effect transistors. Appl. Phys. Lett. 81, 3082 (2002)

    ADS  Google Scholar 

  79. W. Tang, S.A. Dayeh, S.T. Picraux, J.Y. Huang, K.-N. Tu, Ultrashort channel silicon nanowire transistors with nickel silicide source/drain contacts. Nano Lett. 12, 3979–3985 (2012)

    ADS  Google Scholar 

  80. M.B. Das, Physical limitations of MOS structures. Solid-State Electron. 12, 305–336 (1969)

    ADS  Google Scholar 

  81. A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011)

    ADS  Google Scholar 

  82. L. Knoll, M. Schmidt, Q.T. Zhao, S. Trellenkamp, A. Schäfer, K.K. Bourdelle, S. Mantl, Si tunneling transistors with high on-currents and slopes of 50 mV/dec using segregation doped NiSi2 tunnel junctions. Solid-State Electron. 84, 211–215 (2013)

    ADS  Google Scholar 

  83. L. Knoll, Q.-T. Zhao, A. Nichau, S. Trellenkamp, S. Richter, A. Schafer, D. Esseni, L. Selmi, K.K. Bourdelle, S. Mantl, Inverters with strained Si nanowire complementary tunnel field-effect transistors. IEEE Electron Device Lett. 34, 813–815 (2013)

    Google Scholar 

  84. B. Ghosh, M.W. Akram, Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34, 584–586 (2013)

    ADS  Google Scholar 

  85. J.K. Hyun, S. Zhang, L.J. Lauhon, Nanowire heterostructures. Ann. Rev. Mater. Res. 43, 451–479 (2013)

    ADS  Google Scholar 

  86. M. Borg, H. Schmid, K.E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, H. Riel, Vertical III–V nanowire device integration on Si(100). Nano Lett. 14, 1914–1920 (2014)

    Google Scholar 

  87. K.E. Moselund, H. Schmid, C. Bessire, M.T. Björk, H. Ghoneim, H. Riel, InAs-Si nanowire heterojunction tunnel FETs. IEEE Electron Device Lett. 33, 1453–1455 (2012)

    ADS  Google Scholar 

  88. F. Wessely, T. Krauss, U. Schwalke, CMOS without doping: multi-gate silicon-nanowire field-effect-transistors. Solid State Electron. 70, 33–38 (2012)

    ADS  Google Scholar 

  89. M. De Marchi, D. Sacchetto, S. Frache, J. Zhang, P.-E. Gaillardon, Y. Leblebici, G. De Micheli, Polarity control in double-gate, gate-all-around vertically stacked silicon nanowire FETs. IEEE International Electron Devices Meeting (IEDM), pp. 8–4 (2012)

    Google Scholar 

  90. U. Schwalke, T. Krauss, F. Wessely, CMOS without Doping on SOI: multi-gate Si-nanowire transistors for logic and memory applications. ECS J. Solid State Sci. Technol. 2, Q88–Q93 (2013)

    Google Scholar 

  91. A. Colli, A. Tahraou, A. Fasoli, J.M. Kivioja, W.I. Milne, A.C. Ferrari, Top-gated silicon nanowire transistors in a single fabrication step. ACS Nano 3, 1587–1593 (2009)

    Google Scholar 

  92. F. Wessely, T. Krauss, U. Schwalke, Reconfigurable CMOS with undoped silicon nanowire midgap Schottky-barrier FETs. Microelectron. J. 44, 1072–1076 (2013)

    Google Scholar 

  93. M. Mongillo, P. Spathis, G. Katsaros, P. Gentile, S. De Franceschi, Multifunctional devices and logic gates with undoped silicon nanowires. Nano Lett. 12, 3074–3079 (2012)

    Google Scholar 

  94. M. De Marchi, D. Sacchetto, J. Zhang, S. Frache, P.-E. Gaillardon, Y. Leblebici, G. De Micheli, Top-down fabrication of gate-all-around vertically-stacked silicon nanowire FETs with controllable polarity. IEEE Trans. Nanotech. 13, 1029–1038 (2014)

    ADS  Google Scholar 

  95. J. Zhang, M. De Marchi, D. Sacchetto, P.-E. Gaillardon, Y. Leblebici, G. De Micheli, Polarity-controllable silicon nanowire transistors with dual threshold voltages. IEEE Trans. Electron Devices 61, 3654–3660 (2014)

    ADS  Google Scholar 

  96. W.M. Weber, A. Heinzig, J. Trommer, M. Grube, F. Kreupl, T. Mikolajick, Reconfigurable nanowire electronics-enabling a single CMOS circuit technology. IEEE Trans. Nanotech. 13, 1020–1028 (2014)

    ADS  Google Scholar 

  97. J. Beister, A. Wachowiak, A. Heinzig, J. Trommer, T. Mikolajick, W.M. Weber, Temperature dependent switching behaviour of nickel silicided undoped silicon nanowire devices. Phys. Status Solidi (c) 11, 1611–1617 (2014)

    Google Scholar 

  98. D. Martin, A. Heinzig, M. Grube, L. Geelhaar, T. Mikolajick, H. Riechert, W.M. Weber, Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors. Phys. Rev. Lett. 107, 216807 (2011)

    ADS  Google Scholar 

  99. J. Zhang, M. De Marchi, P.E. Gaillardon, G. De Micheli, A Schottky-barrier silicon FinFET with 6.0 mV/dec subthreshold slope over 5 decades of current. Proceedings International Electron Devices Meeting (IEDM) 2014

    Google Scholar 

  100. J. Trommer, A. Heinzig, S. Slesazeck, T. Mikolajick, W.M. Weber, Elementary Aspects for circuit implementation of reconfigurable nanowire transistors. IEEE Electron Device Lett. 35, 141–143 (2014)

    Google Scholar 

  101. M. De Marchi, J. Zhang, S. Frache, D. Sacchetto, P.-E. Gaillardon, Y. Leblebici, G. De Micheli, Configurable logic gates using polarity controlled silicon nanowire gate-all-around FETs. IEEE Electron Device Lett. 35, 880–882 (2014)

    ADS  Google Scholar 

  102. P.-E. Gaillardon, L. Amáru, J. Zhang, G. De Micheli, Advanced system on a chip design based on controllable-polarity FETs. Design, Automation Test Europe Conference (DATE) 2014

    Google Scholar 

  103. A. Heinzig, T. Mikolajick, J. Trommer, D. Grimm, W.M. Weber, Dually active silicon nanowire transistors and circuits with equal electron and hole transport. Nano Lett. 13, 4176–4181 (2013)

    Google Scholar 

  104. J. Trommer, A. Heinzig, A. Heinrich, P. Jordan, M. Grube, S. Slesazeck, T. Mikolajick, W.M. Weber, Material prospects of reconfigurable transistor (RFETs)—from silicon to germanium nanowires. MRS Proceedings, p. 1659 (2014)

    Google Scholar 

  105. W. Göbel, J. Hesse, J.N. Zerne (eds.), Sensors, a Comprehensive Survey, vol. 1. Fundamentals (VCH-Verlag, Weinheim, 1989)

    Google Scholar 

  106. J.I.A. Rashid, J. Abdullah, N.A. Yusof, R. Hajian, The development of silicon nanowire as sensing material and its applications. J. Nanomater. 3, 1–16 (2013)

    Google Scholar 

  107. R. He, P. Yang, Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1, 42–46 (2006)

    ADS  Google Scholar 

  108. M. Messina, J. Njuguna, Potential of silicon nanowires structures as nanoscale piezoresistors in mechanical sensors. IOP Conference Series Material Science Engineering 40, 012038 (2012)

    ADS  Google Scholar 

  109. X.L. Feng, R. He, P. Yang, M.L. Roukes, Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7, 1953–1959 (2007)

    ADS  Google Scholar 

  110. R. He, X.L. Feng, M.L. Roukes, P. Yang, Self-transducing silicon nanowire electromechanical systems at room temperature. Nano Lett. 8, 1756–1761 (2008)

    ADS  Google Scholar 

  111. P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 17, 70 (1970)

    Google Scholar 

  112. P.-K. Shin, T. Mikolajick, H. Ryssel, pH sensing properties of ISFETs with silicon nitride sensitive-gate. J. Electrical Eng. Inf. Sci. 2, 82–87 (1997)

    Google Scholar 

  113. T. Vering, W. Schuhmann, H.-L. Schmidt, T. Mikolajick, T. Falter, H. Ryssel, J. Janata, Field-effect transistors as transducers in biosensors for substrates of dehydrogenases. Electroanalysis 6, 953–956 (1995)

    Google Scholar 

  114. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001)

    ADS  Google Scholar 

  115. F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C.M. Lieber, Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 101, 14017–14022 (2004)

    ADS  Google Scholar 

  116. F.M. Zörgiebel, S. Pregl, L. Römhildt, J. Opitz, W. Weber, T. Mikolajick, L. Baraban, G. Cuniberti, Schottky barrier-based silicon nanowire pH sensor with live sensitivity control. Nano Res. 7, 263–271 (2014)

    Google Scholar 

  117. K.-I. Chen, B.-R. Li, Y.-T. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6, 131–154 (2011)

    Google Scholar 

  118. G.-J. Zhang, Y. Ning, Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal. Chim. Acta 749, 1–15 (2012)

    ADS  Google Scholar 

  119. B.-R. Li, C.-W. Chen, W.-L. Yang, T.-Y. Lin, C.-Y. Pan, Y.-T. Chen, Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor. Biosens. Bioelectron. 45, 252–259 (2013)

    Google Scholar 

  120. T.-S. Pui, A. Agarwal, F. Ye, Y. Huang, P. Chen, Nanoelectronic detection of triggered secretion of pro-inflammatory cytokines using CMOS compatible silicon nanowires. Biosens. Bioelectron. 26, 2746–2750 (2011)

    Google Scholar 

  121. A.K. Wanekaya, W. Chen, N.V. Myung, A. Mulchandan, Nanowire-based electrochemical biosensors. Electroanalysis 18, 533–550 (2006)

    Google Scholar 

  122. B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie, C.M. Lieber, Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 13, 830–834 (2010)

    ADS  Google Scholar 

  123. X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing, H.S. Choe, B. Tian, X. Jiang, C.M. Lieber, Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotech. 7, 174–179 (2012)

    ADS  Google Scholar 

  124. Q. Qing, Z. Jiang, L. Xu, R. Gao, L. Mai, C.M. Lieber, Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotech. 9, 142–147 (2014)

    ADS  Google Scholar 

  125. L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl. Phys. Lett. 91, 233117 (2007)

    ADS  Google Scholar 

  126. M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, H.A. Atwater, Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8, 710–714 (2008)

    ADS  Google Scholar 

  127. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007)

    ADS  Google Scholar 

  128. T.J. Kempa et al., Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 6, 719–733 (2013)

    Google Scholar 

  129. B.Z. Tian, T.J. Kempa, C.M. Lieber, Single nanowire photovoltaics. Chem. Soc. Rev. 38, 16–24 (2009)

    Google Scholar 

  130. Y.-J. Lee, Y.-C. Yao, C.-H. Yang, Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells. Opt. Express 21, A7–A14 (2012)

    Google Scholar 

  131. X. Hua, Y. Zeng, W. Wang, W. Shen, Light absorption mechanism of c-Si/a-Si Half-coaxial nanowire arrays for nanostructured heterojunction photovoltaics. IEEE Trans. Electron Devices 61, 4007–4013 (2014)

    ADS  Google Scholar 

  132. E.C. Garnett, P. Yang, Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130, 9224–9225 (2008)

    Google Scholar 

  133. C.M. Hayner, X. Zhao, H.H. Kung, Materials for rechargeable lithium-ion batteries. Annu. Rev. Chem. Biomol. Eng. 3, 445–471 (2012)

    Google Scholar 

  134. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3, 31–35 (2008)

    ADS  Google Scholar 

  135. R. Szczech, S. Jin, Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56–72 (2011)

    Google Scholar 

  136. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)

    Google Scholar 

  137. H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012)

    Google Scholar 

  138. A. Krause, M. Grube, J. Brueckner, H. Althues, T. Mikolajick, W.M. Weber, Stability and performance of heterogeneous anode assemblies of silicon nanowires on carbon meshes for battery applications. MRS Proceedings (2015)

    Google Scholar 

  139. T.D. Bogart, D. Oka, X. Lu, M. Gu, C. Wang, B.A. Korgel, Lithium ion battery performance of silicon nanowires with carbon skin. ACS Nano 8, 915–922 (2014)

    Google Scholar 

  140. L.-F. Cui, R. Ruffo, C.K. Chan, H. Peng, Y. Cui, Crystalline-amorphous coreshell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491–4955 (2009)

    ADS  Google Scholar 

  141. B. Hoefflinger, Chips 2020: a guide to the future of nanoelectronic. Springer Science and Business Media (2012)

    Google Scholar 

  142. D. Ramos, E. Gil-Santos, O. Malvar, J.M. Llorens, V. Pini, A. San Paulo, M. Calleja, J. Tamayo, Silicon nanowires: where mechanics and optics meet at the nanoscale, Sci. Rep. 3, 3445 (2013)

    Google Scholar 

  143. E. Baek, S. Pregl, M. Shaygan, L. Römhildt, W.M. Weber, T. Mikolajick, D.A. Ryndyk, L. Baraban, G Cuniberti, Optoelectronic switching of nanowire-based hybrid organic/oxide/semiconductor field-effect transistors. Nano Research (2014)

    Google Scholar 

  144. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard, J.R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008)

    ADS  Google Scholar 

  145. Y. Liu, G. Ji, J. Wang, X. Liang, Z. Zuo, Y. Shi, Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration. Nanoscale Res. Lett. 7, 663 (2012)

    ADS  Google Scholar 

  146. M. Shao, D.D.D. Ma, S.-T. Lee, Silicon nanowires—synthesis, properties, and applications. Eur. J. Inorg. Chem. 27, 4264–4278 (2010)

    Google Scholar 

Download references

Acknowledgments

The authors want to thank the nanowire team at NaMLab, CfAED and the chairs of “Material Science and Nanotechnology” and “Nanoelectronic Materials” at TU Dresden for the work put into many of the results discussed in the chapter. Special thanks to Jens Trommer for helping with the editing of the chapter and the figures. This work was partly funded by “Deutsche Forschungsgemeinschaft (DFG)” in the framework of the project ReproNano (MI 1247/6-2) and the Cluster of Excellence ‘CfAED’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mikolajick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mikolajick, T., Weber, W.M. (2015). Silicon Nanowires: Fabrication and Applications. In: Li, Q. (eds) Anisotropic Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18293-3_1

Download citation

Publish with us

Policies and ethics