Skip to main content

A Classification and Overview of Sliding Mode Controller Sliding Surface Design Methods

  • Chapter
Recent Advances in Sliding Modes: From Control to Intelligent Mechatronics

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 24))

Abstract

Sliding mode control provides insensitivity to parameter variations and complete rejection of disturbances. However, this property is only valid in the sliding phase. Sliding surface design can be used to improve controller performance by minimizing or eliminating the time to reach the sliding phase. In this study, we review and classify the methods available in the literature for sliding surface design focusing on single-input systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Utkin, V.I.: Sliding modes and their application in variable structure systems. MIR Publishers, Moscow (1978)

    Google Scholar 

  2. Bandyopadhyay, B., Deepak, F., Kim, K.-S.: Sliding Mode Control Using Novel Sliding Surfaces. LNCIS, vol. 392. Springer, Heidelberg (2009)

    Google Scholar 

  3. Bartoszewicz, A., Nowacka-Leverton, A.: Time-Varying Sliding Modes for Second and Third Order Systems. LNCIS, vol. 382. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  4. Slotine, J.J.E., Li, W.: Applied nonlinear control. Prentice-Hall, Englewood Cliffs (1991)

    Google Scholar 

  5. Qian, D., Liu, X., Ma, M., Xu, C.: GA-based integral sliding mode control for AGC. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010, Part II. LNCS, vol. 6146, pp. 260–267. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Slotine, J.J.E., Spong, M.W.: Robust control with bounded input torques. Journal of Robotic Systems 2(4), 329–352 (1985)

    Article  Google Scholar 

  7. Cho, D.D.: VSC of nonlinear systems: experimental case studies. In: Zinober, A.S.I. (ed.) Variable Structure and Lyapunov Control. LNCIS, vol. 193, pp. 335–364. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  8. Stepanenko, Y., Cao, Y., Su, C.Y.: Variable structure control of robotic manipulator with PID sliding surfaces. International Journal of Robust and Nonlinear Control 8, 79–90 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Wai, R.J.: Adaptive sliding mode control for induction servomotor drive. IEE Proceedings-Electric Power Applications 147(6), 553–562 (2000)

    Article  Google Scholar 

  10. Lin, F.J., Shyu, K.K., Wai, R.J.: Recurrent fuzzy neural network sliding mode controlled motor toggle servomechanism. IEEE/ASME Transactions on Mechatronics 6(4), 453–466 (2001)

    Article  Google Scholar 

  11. Jafarov, E.M., Parlakcı, M.N.A., Istefanopulos, Y.: A New Variable Structure PID-Controller Design for Robot Manipulators. IEEE Transactions on Control Systems Technology 13(1), 122–130 (2005)

    Article  Google Scholar 

  12. Eker, I.: Sliding mode control with PID sliding surface and experimental application to an electromechanical plant. ISA Transactions 45(1), 109–118 (2006)

    Article  Google Scholar 

  13. Orłowska-Kowalska, T., Kami´nski, M., Szabat, K.: Implementation of a sliding-mode controller with an integral function and fuzzy gain value for the electrical drive with an elastic joint. IEEE Transactions on Industrial Electronics 57(4), 1309–1317 (2010)

    Article  Google Scholar 

  14. Lee, H., Kim, E., Kang, H.J., Park, M.: Design of a sliding mode controller with fuzzy sliding surfaces. IEE Proceedings- Control Theory and Applications 145(5), 411–418 (1998)

    Article  Google Scholar 

  15. Choi, S.B., Cheong, C.C., Park, D.W.: Moving switching surfaces for robust control of second order variable structure systems. International Journal of Control 58(1), 229–245 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lu, Y.S., Chen, J.S.: Design of a global sliding mode controller for a motor drive with bounded control. International Journal of Control 62(5), 1001–1019 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Choi, S.B., Park, D.W., Jayasuriya, S.: A time-varying sliding surface for fast and robust tracking control of second order uncertain systems. Automatica 30(5), 899–904 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Roy, R.G., Olgac, N.: Robust nonlinear control via moving sliding surfaces: nth order case. In: Proceedings of the 36th IEEE Conference on Decision and Control, vol. 2, pp. 943–948. IEEE Press, New York (1997)

    Chapter  Google Scholar 

  19. Barmish, B.R.: A Generalization of Kharitonov’s four-polynomial concept for robust stability problems with linearly dependent coefficient perturbations. IEEE Transactions on Automatic Control 34(2), 157–165 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chang, E.-C., Chang, F.-J., Lin, Y.-K.: Improved performance using discrete rotating and shifting switching manifolds of single-phase PWM inverters. In: Proceedings of the IEEE/SICE International Symposium on System Integration, December 20-22, pp. 997–1002. Kyoto University, Kyoto (2011)

    Google Scholar 

  21. Park, D.W., Choi, S.B.: Moving sliding surfaces for high-order variable structure systems. International Journal of Control 72(11), 960-970 (1999)

    Google Scholar 

  22. Slotine, J.J.E.: Sliding controller design for non-linear systems. International Journal of Control 40(2), 421–434 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  23. Salamci, M.U., Ozgoren, M.K., Banks, S.P.: Sliding mode control with optimal sliding surfaces for missile autopilot design. Journal of Guidance, Control, and Dynamics 23(4), 719–727 (2000)

    Article  Google Scholar 

  24. Bartoszewicz, A.: A comment on ’A time varying sliding surface for fast and robust tracking control of second-order uncertain systems’. Automatica 31(12), 1893–1895 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tokat, S.: Sliding mode controlled bioreactor using a time-varying sliding surface. Transactions of the Institute of Measurement and Control 31(5), 435–456 (2009)

    Article  Google Scholar 

  26. Bartoszewicz, A.: Time-varying sliding modes for second order systems. IEE Proceedings-Control Theory and Applications 143(5), 455–462 (1996)

    Article  MATH  Google Scholar 

  27. Betin, F., Pinchon, D., Capolino, G.A.: A time-varying sliding surface for robust position control of a DC motor drive. IEEE Transactions on Industrial Electronics 49(2), 462–473 (2002)

    Article  Google Scholar 

  28. Park, K.B., Tsuji, T.: Terminal sliding mode control of second-order nonlinear uncertain systems. International Journal of Robust and Nonlinear Control 9, 769–780 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Choi, H.S., Park, Y.H., Cho, Y., Lee, M.: Global sliding mode control. IEEE Control Systems Magazine 21(3), 27–35 (2001)

    Article  Google Scholar 

  30. Yilmaz, C., Hurmuzlu, Y.: Eliminating the reaching phase from variable structure control. Transactions of the ASME-G: Journal of Dynamic Systems, Measurement and Control 122(4), 753–757 (2000)

    Google Scholar 

  31. Chang, T.H., Hurmuzlu, Y.: Sliding control without reaching phase and its application to bipedal locomotion. Journal of Dynamics, Systems, Measurement and Control 115, 447–455 (1993)

    Article  MATH  Google Scholar 

  32. Hu, Q., Bo, L., Youmin, Z.: Robust attitude control design for spacecraft under assigned velocity and control constraints. ISA Transactions 52(4), 480–493 (2013)

    Article  Google Scholar 

  33. Tokat, S., Eksin, I., Guzelkaya, M.: A new design method for sliding mode controllers using a linear time-varying sliding surface. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 216(6), 455–466 (2002)

    Google Scholar 

  34. Kaynak, O., Erbatur, K., Ertugrul, M.: The fusion of computationally intelligent methodologies and sliding mode control- a survey. IEEE Transactions on Industrial Electronics IE 48, 4–17 (2001)

    Article  Google Scholar 

  35. Ha, Q.P., Rye, D.C., Durrant-Whyte, H.F.: Fuzzy moving sliding mode control with application to robotic manipulators. Automatica 35, 607–616 (1999)

    Article  MATH  Google Scholar 

  36. Komurcugil, H.: Rotating sliding-line based sliding-mode control for single-phase UPS inverters. IEEE Transactions on Industrial Electronics 59(10), 3719–3726 (2012)

    Article  Google Scholar 

  37. Iliev, B., Hristozov, I.: Variable structure control using Takagi-Sugeno fuzzy system as a sliding surface. In: Proceedings of the IEEE World Congress on Computational Intelligence, Honolulu, USA, May 12-17, pp. 644–649 (2002)

    Google Scholar 

  38. Akhavan, S., Jamshidi, M.: ANN-based sliding mode control for non-holonomic mobile robots. In: Proceedings of the IEEE International Conference on Control Applications, pp. 664–667. IEEE Press, New York (2000)

    Google Scholar 

  39. Jabbari, A., Tomizuka, M., Sakaguchi, T.: Robust nonlinear control of positioning systems with stiction. In: Proceedings of the American Control Conference, San Diego, California, USA, May 23-25, pp. 1097–1102 (1990)

    Google Scholar 

  40. Su, C.Y., Stepanenko, Y.: Adaptive sliding mode control of robot manipulators: general sliding manifold case. Automatica 30(9), 1497–1500 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kirk, D.E.: Optimal control theory: an introduction. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  42. McDonald, D.: Nonlinear techniques for improving servo performance. In: National Electronics Conference, vol. 6, pp. 400–421 (1950)

    Google Scholar 

  43. Kalaykov, I., Iliev, B.: Time-optimal sliding mode control of robot manipulator. In: Proceedings of the 26th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 265–270. IEEE Press, New York (2000)

    Google Scholar 

  44. de Leon-Morales, J.: Sliding mode controllers and observers for electromechanical systems. In: Fridman, L., Moreno, J., Iriarte, R. (eds.) Sliding Modes. LNCIS, vol. 412, pp. 493–516. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  45. Cerruto, E., Consoli, A., Kucer, P., Testa, A.: A fuzzy logic quasi sliding mode controlled motor drive. In: Proceedings of the IEEE International Symposium on Industrial Electronics, pp. 652–658. IEEE Press, New York (1993)

    Google Scholar 

  46. De Azevedo, H.R., Wong, K.P.: A fuzzy logic controller for permanent magnet synchronous machine-a sliding mode approach. In: Proceedings of the IEEE Power Conversion Conference, pp. 672–677. IEEE Press, New York (1993)

    Google Scholar 

  47. Kurode, S., Spurgeon, S.K., Bandyopadhyah, B., Gandhi, P.S.: Sliding mode control for slosh-free motion using a nonlinear sliding surface. IEEE/ASME Transactions on Mechatronics 18(2), 714–724 (2013)

    Article  Google Scholar 

  48. Takahashi, R.H.C., Peres, P.L.D., Barbosa, L.L.S.: A sliding mode controlled sinusoidal voltage source with ellipsoidal switching surface. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications 46(6), 714–721 (1999)

    Article  Google Scholar 

  49. Kelly, R.: Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions. IEEE Transactions on Automatic Control 43(7), 934–938 (1998)

    Article  MATH  Google Scholar 

  50. Lee, J.J.: Adaptive tracking control of DC servomotors. IEEE Transactions on Consumer Electronics 37(4), 905–912 (1991)

    Article  Google Scholar 

  51. Fridman, L., Levant, A.: Higher order sliding modes. In: Barbot, J.P., Perruguetti, W. (eds.) Sliding Mode Control in Engineering, pp. 53–101. Marcel Dekker, New York (2002)

    Google Scholar 

  52. Mondal, S., Mahanta, C.: Nonlinear sliding surface based second order sliding mode controller for uncertain linear systems. Communications in Nonlinear Science and Numerical Simulation 16(9), 3760–3769 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  53. Richter, H.: Tracking of a thermodynamic process using a polytropic surface as a sliding manifold. In: Proceedings of the American Control Conference, vol. 1, pp. 197–201. IEEE Press, New York (2003)

    Google Scholar 

  54. Lee, C.K., Kwok, N.M.: A variable structure controller with adaptive switching surfaces. In: Proceedings of the American Control Conference, vol 1, pp. 1033–1034. IEEE Press, New York (1995)

    Google Scholar 

  55. Sira-Ramirez, H.: On the dynamical sliding mode control of nonlinear systems. International Journal of Control 57(5), 1039–1061 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  56. Efe, O., Kasnakoglu, C.: A fractional adaptation law for sliding mode control. International Journal of Adaptive Control and Signal Processing 22, 968–986 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  57. Efe, O.: Fractional order sliding mode control with reaching law approach. Turkish Journal of Electrical Engineering and Computer Science 18(5), 731–747 (2010)

    Google Scholar 

  58. Delavari, H., Ranjbar, A.N., Ghaderi, R., Momani, S.: Fractional order control of a coupled tank. Nonlinear Dynamics 61, 383–397 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  59. Tang, Y., Zhang, X.Y., Zhang, D., Zhao, G., Guan, X.P.: Fractional order sliding mode controller design for antilock braking systems. Neurocomputing 111, 122–130 (2013)

    Article  Google Scholar 

  60. Zak, M.: Terminal attractors for addressable memory in neural networks. Physics Letters A 133(12), 18–22 (1988)

    Article  Google Scholar 

  61. Bianchini, M., Gori, M., Maggini, M.: Does terminal attractor backpropagation guarantee global optimization? In: Marinaro, M., Morasso, P.G. (eds.) Proceedings of the International Conference on Artificial Neural Networks, vol. 1(pt. 2), pp. 377–380. Springer, London (1994)

    Google Scholar 

  62. Zhihong, M., Paplinski, A.P., Wu, H.R.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Transactions on Automatic Control 39(12), 2464–2469 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  63. Yu, X.H., Zhihong, M.: Model reference adaptive control systems with terminal sliding modes. International Journal of Control 64(6), 1165–1176 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  64. Zhihong, M., Yu, X.H.: Terminal sliding mode control of MIMO linear systems. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications 44(11), 1065–1070 (1997)

    Article  MathSciNet  Google Scholar 

  65. Yu, X.H., Zhihong, M.: Multi-input uncertain linear systems with terminal sliding mode control. Automatica 34(3), 389–392 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  66. Wu, Y., Yu, X.H., Zhihong, M.: Terminal sliding mode control design for uncertain dynamic systems. Systems and Control Letters 34, 281–287 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  67. Yu, S.H., Yu, X.H., Bijan, S., Man, Z.H.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41, 1957–1964 (2005)

    Article  MATH  Google Scholar 

  68. Su, J., Yang, J., Li, S.: Continuous finite-time anti-disturbance control for a class of uncertain nonlinear system. Transactions of the Institute of Measurement and Control 36(3), 300–311 (2013)

    Article  Google Scholar 

  69. Yang, J., Li, S., Su, J., Yu, X.: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7), 2287–2291 (2013)

    Article  MathSciNet  Google Scholar 

  70. Yu, X.H., Zhihong, M., Wu, Y.: Terminal sliding modes with fast transient response. In: Proceedings of the 36th IEEE Conference on Decision and Control, vol. 2, pp. 962–963. IEEE Press, New York (1997)

    Chapter  Google Scholar 

  71. Aghababa, M.P., Sohrab, K., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Applied Mathemathical Modelling 35(6), 3080–3091 (2011)

    Article  MATH  Google Scholar 

  72. Yu, X.H., Zhihong, M.: Fast terminal sliding mode control design for nonlinear dynamic systems. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications 49(2), 261–264 (2002)

    Article  MathSciNet  Google Scholar 

  73. Li, Y.F., Eriksson, B., Wikander, J.: Sliding mode control of two-mass positioning systems. In: Proceedings of the 14th IFAC Triennial World Congress, pp. 151–156. Pergamon, Oxford (1999)

    Google Scholar 

  74. Kim, J.J., Lee, J.J., Park, K.B., Youn, M.J.: Design of a new time-varying sliding surface for robot manipulator using variable structure controller. Electronics Letters 29(2), 195–196 (1993)

    Article  Google Scholar 

  75. Bartoszewicz, A.: Design of a nonlinear time-varying switching line for second order systems. In: Proceedings of the 37th IEEE Conference on Decision and Control, vol. 3, pp. 2404–2408. IEEE Press, New York (1998)

    Google Scholar 

  76. Tokat, S., Eksin, I., Guzelkaya, M., Soylemez, T.: Design of a sliding mode controller with a nonlinear time-varying sliding surface. Transactions of the Institute of Measurement and Control 25(2), 145–162 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezai Tokat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tokat, S., Fadali, M.S., Eray, O. (2015). A Classification and Overview of Sliding Mode Controller Sliding Surface Design Methods. In: Yu, X., Önder Efe, M. (eds) Recent Advances in Sliding Modes: From Control to Intelligent Mechatronics. Studies in Systems, Decision and Control, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-18290-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18290-2_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18289-6

  • Online ISBN: 978-3-319-18290-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics