Skip to main content

Construction of Tight Frames on Graphs and Application to Denoising

  • Chapter
  • First Online:
Book cover Handbook of Big Data Analytics

Abstract

Given a neighborhood graph representation of a finite set of points \(x_i\in \mathbb {R}^d,i=1,\ldots ,n,\) we construct a frame (redundant dictionary) for the space of real-valued functions defined on the graph. This frame is adapted to the underlying geometrical structure of the x i, has finitely many elements, and these elements are localized in frequency as well as in space. This construction follows the ideas of Hammond et al. (Appl Comput Harmon Anal 30:129–150, 2011), with the key point that we construct a tight (or Parseval) frame. This means we have a very simple, explicit reconstruction formula for every function f defined on the graph from the coefficients given by its scalar product with the frame elements. We use this representation in the setting of denoising where we are given noisy observations of a function f defined on the graph. By applying a thresholding method to the coefficients in the reconstruction formula, we define an estimate of f whose risk satisfies a tight oracle inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Candès (2006) only hints at the proof; we provide a proof in the appendix for completeness.

References

  • Belkin M, Niyogi P (2002) Using manifold structure for partially labeled classification. In: NIPS, pp 929–936

    Google Scholar 

  • Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  Google Scholar 

  • Bickel P, Li B (2007) Local polynomial regression on unknown manifolds. In: Complex datasets and inverse problems: tomography, networks and beyond. IMS lecture notes, vol 54. Institute of Mathematical Statistics, Bethesda, pp 177–186

    Chapter  Google Scholar 

  • Candès E (2006) Modern statistical estimation via oracle inequalities. Acta Numer 15:257–325

    Article  MathSciNet  Google Scholar 

  • Casazza P, Kutyniok G, Philipp F (2013) Introduction to finite frame theory. In: Casazza PG, Kutyniok G (eds) Finite frames, applied and numerical harmonic analysis. Birkhäuser, Boston, pp 1–53

    Chapter  Google Scholar 

  • Christensen O (2008) Frames and bases: an introductory course. In: Applied and numerical harmonic analysis. Birkhäuser, Boston

    Google Scholar 

  • Coulhon T, Kerkyacharian G, Petrushev P (2012) Heat kernel generated frames in the setting of Dirichlet spaces. J Fourier Anal Appl 18(5):995–1066

    Article  MathSciNet  Google Scholar 

  • Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3):425–455

    Article  MathSciNet  Google Scholar 

  • Gavish M, Nadler B, Coifman RR (2010) Multiscale wavelets on trees, graphs and high dimensional data: theory and applications to semi supervised learning. In: Fürnkranz J, Joachims T (eds) ICML. Omnipress, Madison, pp 367–374

    Google Scholar 

  • Haltmeier M, Munk A (2014) Extreme value analysis of empirical frame coefficients and implications for denoising by soft-thresholding. Appl Comput Harmon Anal 36(3):434–460. https://doi.org/10.1016/j.acha.2013.07.004

    Article  MathSciNet  Google Scholar 

  • Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets on graphs via spectral graph theory. Appl Comput Harmon Anal 30(2):129–150

    Article  MathSciNet  Google Scholar 

  • Han D (2007) Frames for undergraduates. In: Student mathematical library. American Mathematical Society, Providence

    Google Scholar 

  • Kpotufe S (2011) k-NN regression adapts to local intrinsic dimension. In: NIPS, pp 729–737

    Google Scholar 

  • Kpotufe S, Dasgupta S (2012) A tree-based regressor that adapts to intrinsic dimension. J Comput Syst Sci 78(5):1496–1515

    Article  MathSciNet  Google Scholar 

  • Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  • Tenenbaum J, de Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the German DFG, under the Research Unit FOR-1735 “Structural Inference in Statistics—Adaptation and Efficiency.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Blanchard .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Theorem 3

Theorem 3 states a oracle-type inequality which captures the relation of soft thresholding estimators \(\hat {f}_{S_s}=\sum _{k,l} S_s \left (\left \langle \,y,\varPsi _{kl} \right \rangle ,t_{kl}\right ) \varPsi _{kl}\) defined in (20.16) to the collection of keep-or-kill estimators on a Parseval frame. This result is known in the literature (see Candès 2006, Section 9), but we provide a short self-contained proof for completeness, modulo a technical result from Donoho and Johnstone (1994) for soft thresholding of a single one-dimensional Gaussian variable, which is basic for the Proof of Theorem 3.

Lemma 1

For 0 ≤ δ ≤ 1∕2, \(t=\sqrt {2\log (\delta ^{-1})}\) and \(X\sim \mathscr {N}(\mu ,1)\)

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} {{\mathbf{E}}_{X}\left({\left(S_s(X,t)-\mu\right)^2}\right)}&\displaystyle \leq &\displaystyle (2\log ( \delta^{-1})+1)(\delta+\min(1,\mu^2) )\\ &\displaystyle =&\displaystyle (t^2+1)\left( \exp \left(-\frac{t^2}{2}\right) +\min(1,\mu^2) \right). \end{array} \end{aligned} $$
(20.23)

The proof of this lemma can be found in appendix 1 of Donoho and Johnstone (1994). Now we are able to prove Theorem 3.

Proof

First note that for y = τx, τ > 0, we have

$$\displaystyle \begin{aligned} S_s(y,u)=\tau S_s\left(x, \frac{u}{\tau}\right). \end{aligned} $$
(20.24)

Secondly we remark that

$$\displaystyle \begin{aligned} \frac{\left\langle\,y,\varPsi_{kl} \right\rangle}{\sigma\left\lVert \varPsi_{kl} \right\rVert}\sim\mathscr{N}\left(\frac{a_{kl}}{\sigma\left\lVert \varPsi_{kl} \right\rVert},1\right). \end{aligned} $$
(20.25)

Considering now the risk of the soft thresholding estimator \(\hat {f}_{S_s}\) we get

$$\displaystyle \begin{aligned} \begin{array}{rcl} {\mathbf{E}\left(\left\lVert \hat{f}_{S_{s}}-f \right\rVert^2\right)} &\displaystyle =&\displaystyle {\mathbf{E}\left(\left\lVert \sum_{k,l} \left({S_{s}}\left(\left\langle\,y,\varPsi_{kl} \right\rangle, t_{kl}\right)-a_{kl}\right) \varPsi_{kl} \right\rVert^2\right)}\\ &\displaystyle \leq &\displaystyle {\mathbf{E}\left(\sum_{k,l}\left({S_{s}} \left(\left\langle\,y,\varPsi_{kl} \right\rangle, t_{kl} \right)-a_{kl}\right)^2\right)}\\ &\displaystyle =&\displaystyle \sum_{k,l} {\mathbf{E}\left(\left({S_{s}}\left(\left\langle\,y,\varPsi_{kl} \right\rangle, t_{kl}\right)-a_{kl}\right)^2\right)}. \end{array} \end{aligned} $$
(20.26)

by using inequality (20.6). By applying (20.24) and then (20.23) with \(t=\sqrt {2\log (n)}\) it follows that

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle {\mathbf{E}\left(\left\lVert \hat{f}_{S_s}-f \right\rVert^2\right)} \leq \sum_{k,l} \sigma^2\left\lVert \varPsi_{kl} \right\rVert^2 {\mathbf{E}\left(\left({S_{s}}\left(\frac{\left\langle\,y,\varPsi_{kl} \right\rangle}{\sigma\left\lVert \varPsi_{kl} \right\rVert}, \sqrt{2\log(n)}\right)-\frac{a_{kl}}{\sigma\left\lVert \varPsi_{kl} \right\rVert}\right)^2\right)}\\ &\displaystyle &\displaystyle \quad \leq \sum_{k,l} \sigma^2\left\lVert \varPsi_{kl} \right\rVert^2 (2\log(n)+1)\left(\exp \left(-\frac{2\log(n)}{2}\right) +\min \left(1,\frac{a_{kl}^2}{\sigma^2\left\lVert \varPsi_{kl} \right\rVert^2}\right) \right)\\ &\displaystyle &\displaystyle \quad = \sum_{k,l} (2\log(n)+1)\left( \frac{1}{n}\sigma^2\left\lVert \varPsi_{kl} \right\rVert^2 +\min \left(\sigma^2\left\lVert \varPsi_{kl} \right\rVert^2,a_{kl}^2\right)\right )\\ &\displaystyle &\displaystyle \quad = (2\log(n)+1) \left( \frac{1}{n} \sum_{k,l} \sigma^2\left\lVert \varPsi_{kl} \right\rVert^2 +\sum_{k,l} \min \left(\sigma^2\left\lVert \varPsi_{kl} \right\rVert^2,a_{kl}^2\right) \right). \end{array} \end{aligned} $$
(20.27)

Recalling the Parseval frame property \(\sum _{k,l} \left \lVert \varPsi _{kl} \right \rVert ^2=n\), we finally obtain

$$\displaystyle \begin{aligned} \begin{array}{rcl} {\mathbf{E}\left(\left\lVert \hat{f}_{S_s}-f \right\rVert^2\right)}&\displaystyle \leq &\displaystyle (2\log(n)+1) \left( \frac{1}{n}n \sigma^2 +\sum_{k,l} \min \left(\sigma^2\left\lVert \varPsi_{kl} \right\rVert^2,a_{kl}^2\right) \right)\\ &\displaystyle =&\displaystyle (2\log(n)+1) \left( \sigma^2 +\sum_{k,l} \min \left(\sigma^2\left\lVert \varPsi_{kl} \right\rVert^2,a_{kl}^2\right) \right). \end{array} \end{aligned} $$
(20.28)

where we recognize the upper bound \(\sum _{k,l} \min \left (\sigma ^2\left \lVert \varPsi _{kl} \right \rVert ^2,a_{kl}^2 \right )=OB(f)\) for the oracle. □

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Göbel, F., Blanchard, G., Luxburg, U.v. (2018). Construction of Tight Frames on Graphs and Application to Denoising. In: Härdle, W., Lu, HS., Shen, X. (eds) Handbook of Big Data Analytics. Springer Handbooks of Computational Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-18284-1_20

Download citation

Publish with us

Policies and ethics