Skip to main content

On Geometry of the Zeros of a Polynomial

  • Chapter
Computation, Cryptography, and Network Security
  • 2374 Accesses

Abstract

Let \(p(z) = a_{0} + a_{1}z + a_{2}z^{2} + a_{3}z^{3} + \cdots + a_{n}z^{n}\) be a polynomial of degree n, where the coefficients a k may be complex. The problem of locating the zeros of a polynomial p(z) is a long-standing classical problem which has frequently been investigated. These problems, besides being of theoretical interest, have important applications in many scientific specialization areas, such as coding theory, cryptography, combinatorics, number theory, mathematical biology, engineering, signal processing, communication theory, and control theory, and for this reason there is always a need for better and sharper results. This paper is expository in nature, and here we make an attempt to provide a systematic study of these problems by presenting some results starting from the results of Gauss and Cauchy, who we believe were the earliest contributors in this subject, to some of the most recent ones. When possible, we have tried to present the proofs of some of the theorems. Also, included here are some results on evaluating the quality of bounds by using numerical methods or MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Theorem 3.6 was proved independently and by a different method by Mishael Zedek [72].

References

  1. Aberth, O.: Iteration methods for finding all zeros of a polynomial simultaneously. Math. Comput. 27, 339–344 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Affane-Aji, C., Agarwal, N., Govil, N.K.: Location of zeros of polynomials. Math. Comput. Model. 50, 306–313 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Affane-Aji, C., Biaz, S., Govil, N.K.: On annuli containing all the zeros of a polynomial. Math. Comput. Model. 52, 1532–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahn, Y.J., Kim, S-H.: Zeros of certain trinomials equations. Math. Inequal. Appl. 9, 225–232 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Anai, H., Horimoto, K.: Algebraic biology 2005. In: Proceedings of the 1st International Conference on Algebraic on Algebraic Biology, Tokyo, Japan (2005)

    Google Scholar 

  6. Aziz, A., Rather, N.A.: Location of zeros of trinomials and quadrinomials. Math. Inequal. Appl. 17, 823–829 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Berwald, L.: Elementare Sätze uber die Abgrenzung der Wursln einer algebraischen Gleichung. Acta. Sci. Math. Litt. Sci. Szeged 6, 209–221 (1934)

    Google Scholar 

  8. Bidkham, M., Shashahani, E.: An annulus for the zeros of polynomials. Appl. Math. Lett. 24, 122–125 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biernacki, M.: Sur les équations algébriques contenant des paramètres arbitraires. Bull. Acad. Polon. Sci. Sér. A, III, 541–685 (1927)

    Google Scholar 

  10. Birkhoff, G.D.: An elementary double inequality for the roots of an algebraic equation having greatest value. Bull. Am. Math. Soc. 21, 494–495 (1914)

    Article  Google Scholar 

  11. Bissel, C.: Control Engineering, 2nd edn. CRC Press, Boca Raton (2009)

    Google Scholar 

  12. Borwein, P., Erdelyi, T.: Polynomials and Polynomial Inequalities. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  13. Carmichael, R.D., Mason, T.E.: Note on the roots of algebraic equations. Bull. Am. Math. Soc. 21, 14–22 (1914)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cauchy, A.L.: Excercises de Mathematiques. IV Annee de Bure Freres, Paris (1829)

    Google Scholar 

  15. Cohn, A.: Über die Anzahl der Wurzeln einer algebraischen Gleichung in einen Kreise. Math. Z. 14, 110–148 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dalal, A., Govil, N.K.: On region containing all the zeros of a polynomial. Appl. Math. Comput. 219, 9609–9614 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dalal, A., Govil, N.K.: Annulus containing all the zeros of a polynomial. Appl. Math. Comput. 249, 429–435 (2014)

    Article  MathSciNet  Google Scholar 

  18. Dalal, A., Govil, N.K.: Generalization of some results on the annulus containing all the zeros of a polynomial (preprint)

    Google Scholar 

  19. Datt, B., Govil, N.K.: On the location of zeros of polynomials. J. Approx. Theory 24, 78–82 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dehmer, M.: On the location of zeros of complex polynomials. J. Inequal. Pure Appl. Math. 7(1), 1–27 (2006)

    MathSciNet  Google Scholar 

  21. Dehmer, M., Mowshowitz, A.: Bounds on the moduli of polynomial zeros. Appl. Math. Comput. 218, 4128–4137 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dehmer, M., Tsoy, Y.R.: The quality of zero bounds for complex polynomials. PLoS ONE 7(7) (2012). Doi:10.1371/journal.pone.0039537

    Google Scholar 

  23. Dewan, K.K.: On the location of zeros of polynomials. Math. Stud. 50, 170–175 (1982)

    MathSciNet  Google Scholar 

  24. Diaz-Barrero, J.L.: An annulus for the zeros of polynomials. J. Math. Anal. Appl. 273, 349–352 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Diaz-Barrero, J.L.: Note on bounds of the zeros. Mo. J. Math. Sci. 14, 88–91 (2002)

    MathSciNet  Google Scholar 

  26. Diaz-Barrero, J.L., Egozcue, J.J.: Bounds for the moduli of zeros. Appl. Math. Lett. 17, 993–996 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dieudonné, J.: La théorie analytique des polynômes d’une variable. Mémor. Sci. Math. 93, 1–71 (1938)

    Google Scholar 

  28. Donaghey, R., Shapiro, L.W.: Motzkin numbers. J. Comput. Theor. 23, 291–301 (1977)

    MathSciNet  MATH  Google Scholar 

  29. Ehrlich, L.W.: A modified Newton method for polynomials. Commun. ACM 10, 107–108 (1967)

    Article  MATH  Google Scholar 

  30. Fejér, L.: Üeber Kreisgebiete, in denen eine Wurzel einer algebraischen Glieichung liegt. Jber. Deutsch. Math. Verein. 26, 114–128 (1917)

    MATH  Google Scholar 

  31. Fell, H.: The geometry of zeros of trinomials equations. Rend. Circ. Mat. Palermo 28(2), 303–336 (1980)

    Article  MathSciNet  Google Scholar 

  32. Fujiwara, M.: A Ueber die Wurzeln der algebraischen Gleichungen. Tôhoku Math. J. 8, 78–85 (1915)

    MATH  Google Scholar 

  33. Gauss, K.F.: Beiträge zur Theorie der algebraischen Gleichungen. Abh. Ges. Wiss. Göttingen 4; Ges. Werke 3, 73–102 (1850)

    Google Scholar 

  34. Goodman, A.W., Schoenberg, I.J.: A proof of Grace’s theorem by induction. Honam Math. J. 9, 1–6 (1987)

    MathSciNet  MATH  Google Scholar 

  35. Govil, N.K., Kumar, P.: On the annular regions containing all the zeros of a polynomial (preprint)

    Google Scholar 

  36. Grace, J.H.: The zeros of a polynomial. Proc. Camb. Philos. Soc. 11, 352–357 (1901)

    Google Scholar 

  37. Heitzinger, W., Troch, W.I., Valentin, G.: Praxisnichtlinearer Gleichungen. Carl Hanser Varlag, München-Wien (1985)

    Google Scholar 

  38. Jain, V.K.: On Cauchy’s bound for zeros of a polynomial. Turk. J. Math. 30, 95–100 (2006)

    MATH  Google Scholar 

  39. Jankowski, W.: Sur les zéros dún polynomial contenant un paramètres arbitraires. Ann. Polon. Math. 3, 304–311 (1957)

    MathSciNet  MATH  Google Scholar 

  40. Joyal, A., Labelle, G., Rahman, Q.I.: On the location of zeros of polynomials. Can. Math. Bull. 10, 53–63 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kalantari, B.: An infinite family of bounds on zeros of analytic functions and relationship to smale’s bound. Math. Comput. 74, 841–852 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kelleher, S.B.: Des limites des zéroes d’une polynome. J. Math. Pures Appl. 2, 167–171 (1916)

    Google Scholar 

  43. Kim, S.-H.: On the moduli of the zeros of a polynomial. Am. Math. Mon. 112, 924–925 (2005)

    Article  MATH  Google Scholar 

  44. Kojima, J.: On the theorem of Hadamard and its applications. Tôhoku Math. J. 5, 54–60 (1914)

    MATH  Google Scholar 

  45. Kuniyeda, M.: Notes on the roots of algebraic equation. Tôhoku Math. J. 9, 167–173 (1916)

    MATH  Google Scholar 

  46. Laudau, E.: Über den Picardschen Satz, Vierteijahrsschrift Naturforsch. Gesellschaft Zürich 51, 252–318 (1906)

    Google Scholar 

  47. Laudau, E.: Sur quelques généralisations du théorème de M. Picard. Ann. École Norm (3) 24, 179–201 (1907)

    Google Scholar 

  48. Marden, M.: The zeros of certain composite polynomials. Bull. Am. Math. Soc. 49, 93–100 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  49. Marden, M.: Geometry of Polynomials. Mathematical Surveys and Monographs, vol. 3. American Mathematical Society, Providence, RI (1966)

    Google Scholar 

  50. Markovitch, D.: On the composite polynomials. Bull. Soc. Math. Phys. Serbie 3(3–4), 11–14 (1951)

    MathSciNet  MATH  Google Scholar 

  51. Milovanović, G.V., Petković, M.S.: On computational efficieny of the iterative methods for the simultaneous approximation of polynomial zeros. ACM Trans. Math. Softw. 12, 295–306 (1986)

    Article  MATH  Google Scholar 

  52. Milovanovic, G.V., Rassias, M.T.: Analytic Number Theory, Approximation Theory, and Special Function. Springer, Berlin (2014)

    Book  Google Scholar 

  53. Milovanovic, G.V., Mitrinovic, D.S., Rassias, T.M.: Topics in Polynomials: Extremal Problems, Inequalities, Zeros. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  54. Miodrag, S.P.: A highly efficient root-solver of very fast convergence. Appl. Math. Comput. 205, 298–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Montel, P.: Sur la limite supéieure des modules des zéros des polynômes. C. R. Acad. Sci. Paris 193, 974–976 (1931)

    Google Scholar 

  56. Narayana, T.V.: Sur les treillis formes par les partitions d’une unties et leurs applications a la theorie des probabilites. Comp. Rend. Acad. Sci. Paris. 240 (1955), 1188–1189

    MATH  Google Scholar 

  57. Nourein, A.W.M.: An improvement on two iteration methods for simultaneously determination of the zeros of a polynomial. Int. J. Comput. Math. 6, 241–252 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pachter, L., Sturmdfels, B.: Algebraic Statistics for Computational Biology. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  59. Peretz, R., Rassias, T.M.: Some remarks on theorems of M. Marden concerning the zeros of certain composite polynomials. Complex Variables 18, 85–89 (1992)

    MathSciNet  MATH  Google Scholar 

  60. Prasolov, V.V.: Polynomials. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  61. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  62. Rather, N.A., Mattoo, S.G.: On annulus containing all the zeros of a polynomial. Appl. Math. E-Notes 13, 155–159 (2013)

    MathSciNet  MATH  Google Scholar 

  63. Rubinstein, Z.: Some results in the location of the zeros of linear combinations of polynomials. Trans. Am. Math. Soc. 116, 1–8 (1965)

    Article  MATH  Google Scholar 

  64. Sagan, H.: Boundary and Eigenvalue Problems in Mathematical Physics. Dover Publications, Mineola (1989)

    MATH  Google Scholar 

  65. Schur, J.: Zwei Sätze über algebraische Gleichungen mit lauter rellen Wurzeln. J. Reine Agnew. Math. 144, 75–88 (1914)

    MathSciNet  MATH  Google Scholar 

  66. Sun, Y.J., Hsieh, J.G.: A note on circular bound of polynomial zeros. IEEE Trans. Circ. Syst. I 43, 476–478 (1996)

    Article  MathSciNet  Google Scholar 

  67. Szegö, G.: Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen. Math. Z. 13, 28–55 (1922)

    MATH  Google Scholar 

  68. Tôya, T.: Some remarks on Montel’s paper concerning upper limits of absolute values of roots of algebraic equations. Sci. Rep. Tokyo Bunrika Daigaku A1, 275–282 (1933)

    Google Scholar 

  69. Walsh, J.L.: An inequality for the roots of an algebraic equation. Ann. Math. 25, 285–286 (1924)

    Article  MATH  Google Scholar 

  70. Williams, K.P.: Note concerning the roots of an equation. Bull. Am. Math. Soc. 28, 394–396 (1922)

    Article  MATH  Google Scholar 

  71. Yayenie, O.: A note on generalized Fibonacci sequences. Appl. Math. Comput. 217, 5603–5611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  72. Zedek, M.: Continuity and location of zeros of linear combination of polynomials. Proc. Am. Math. Soc. 16, 78–84 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  73. Zeheb, F.: On the largest modulus of polynomial zeros. IEEE Trans. Circ. Syst. I 49, 333–337 (1991)

    Google Scholar 

  74. Z̃ilović, M.S., Roytman, L.M., Combettes, P.L., Swamy, M.N.S.: A bound for the zeros of polynomials. IEEE Trans. Circ. Syst. I 39, 476–478 (1992)

    Google Scholar 

  75. Zölzer, U.: Digital Audio Signal Processing. Wiley, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Govil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Govil, N.K., Nwaeze, E.R. (2015). On Geometry of the Zeros of a Polynomial. In: Daras, N., Rassias, M. (eds) Computation, Cryptography, and Network Security. Springer, Cham. https://doi.org/10.1007/978-3-319-18275-9_10

Download citation

Publish with us

Policies and ethics