Skip to main content

Entomopathogenic Nematode Application Technology

  • Chapter
Nematode Pathogenesis of Insects and Other Pests

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Biocontrol success when using entomopathogenic nematodes (EPNs) in the genera Heterorhabditis and Steinernema relies on a variety of factors including components of the application event itself. Successful application encompasses both abiotic and biotic influences (Grewal, 2002; Shapiro-Ilan, Gouge, & Koppenhöfer, 2002; Shapiro-Ilan, Gouge, Piggott, & Patterson Fife, 2006; Shapiro-Ilan, Han, & Dolinski, 2012). For example, a diverse array of equipment is available for EPN application including various spray technology and irrigation systems. The specific application equipment that is chosen and parameters associated with EPN distribution can have a direct impact on the level of pest suppression achieved. Additionally, the choice of nematode species, rate of application, and other concurrent management practices are critical to success. In this chapter we review recent literature on EPN application technology, discuss novel innovations, and explore opportunities for future improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo, J. P. M., Samuels, R. I., Machado, I. R., & Dolinski, C. (2007). Interactions between isolates of the entomopathogenic fungus Metarhizium anisopliae and the entomopathogenic nematode Heterorhabditis bacteriophoraJPM4 during infection of the sugar cane borer Diatraea saccharalis (Lepidoptera: Pyralidae). Journal of Invertebrate Pathology, 96, 187–192.

    PubMed  Google Scholar 

  • Adhikari, B. N., Chin-Yo, L., Xiaodong, B., Ciche, T. A., Grewal, P. S., Dillman, A. R., et al. (2009). Transcriptional profiling of trait deterioration in the insect pathogenic nematode Heterorhabditis bacteriophora. BMC Genomics, 10, 609.

    PubMed Central  PubMed  Google Scholar 

  • Alumai, A., & Grewal, P. S. (2004). Tank-mix compatibility of the entomopathogenic nematodes, Heterorhabditis bacteriophora and Steinernema carpocapsae, with selected chemical pesticides used in turfgrass. Biocontrol Science and Technology, 14, 725–730.

    Google Scholar 

  • Anbesse, S., Sumaya, N. H., Dörfler, A. V., Strauch, S., & Ehlers, R.-U. (2013). Selective breeding for desiccation tolerance in liquid culture provides genetically stable inbred lines of the entomopathogenic nematode Heterorhabditis bacteriophora. Applied Microbiology and Biotechnology, 97, 731–739.

    CAS  PubMed  Google Scholar 

  • Ansari, M. A., & Butt, T. M. (2011). Effect of potting media on the efficacy and dispersal of entomopathogenic nematodes for the control of black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae). Biological Control, 58, 310–318.

    Google Scholar 

  • Ansari, M. A., Shah, F. A., & Butt, T. M. (2008). Combined use of entomopathogenic nematodes and Metarhizium anisopliae as a new approach for black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) control. Entomologia Experimentalis et Applicata, 129, 340–347.

    Google Scholar 

  • Ansari, M. A., Shah, F. A., & Butt, T. M. (2010). The entomopathogenic nematode Steinernema kraussei and Metarhizium anisopliae work synergistically in controlling overwintering larvae of the black vine weevil, Otiorhynchus sulcatus, in strawberry growbags. Biocontrol Science and Technology, 20, 99–105.

    Google Scholar 

  • Ansari, M. A., Shah, F. A., & Moens, T. M. (2006). Field trials against Hoplia philanthus (Coleoptera: Scarabaeidae) with a combination of an entomopathogenic nematode and the fungus Metarhizium anisopliae CLO 53. Biological Control, 39, 453–459.

    Google Scholar 

  • Ansari, M. A., Tirry, L., & Moens, M. (2004). Interaction between Metarhizium anisopliae CLO 53 and entomopathogenic nematodes for the control of Hoplia philanthus. Biological Control, 31, 172–180.

    Google Scholar 

  • Arthurs, S., Heinz, K. M., & Prasifka, J. R. (2004). An analysis of using entomopathogenic nematodes against above-ground pests. Bulletin of Entomological Research, 94, 297–306.

    CAS  PubMed  Google Scholar 

  • Bai, C., Shapiro-Ilan, D. I., Gaugler, R., & Hopper, K. R. (2005). Stabilization of beneficial traits in Heterorhabditis bacteriophora through creation of inbred lines. Biological Control, 32, 220–227.

    Google Scholar 

  • Bai, C., Shapiro-Ilan, D. I., Gaugler, R., & Yi, S. (2004). Effect of entomopathogenic nematode concentration on survival during cryopreservation in liquid nitrogen. Journal of Nematology, 36, 281–284.

    PubMed Central  PubMed  Google Scholar 

  • Bai, X., Adams, B. J., Ciche, T. A., Clifton, S., Gaugler, R., Hogenhout, S. A., Spieth, J., Sternberg, P. W., Wilson, R. K., & Grewal, P. S. (2009). Transcriptomic analysis of the entomopathogenic nematode Heterorhabditis bacteriophora TTO1. BMC Genomics, 10, art. No. 205.

    Google Scholar 

  • Bai, X., Adams, B. J., Ciche, T. A., Clifton, S., Gaugler, R., Kim, K.-S., Spieth, J., Steinberg, P. W., Wilson, R. K., & Grewal, P. S. (2013). A lover and a fighter: The genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. PLoS ONE, 8(7), art. No. 69618.

    Google Scholar 

  • Bai, X., & Grewal, P. S. (2007). Identification of two down-regulated genes in entomopathogenic nematode Heterorhabditis bacteriophora infective juveniles upon contact with insect hemolymph. Molecular and Biochemical Parasitology, 156, 162–166.

    CAS  PubMed  Google Scholar 

  • Bal, H. K., Taylor, R. A. J., & Grewal, P. S. (2014). Ambush foraging entomopathogenic nematodes employ “sprinters” for long-distance dispersal in the absence of hosts. Journal of Parasitology, 100, 422–432.

    PubMed  Google Scholar 

  • Barbercheck, M. E. (1992). Effect of soil physical factors on biological control agents of soil insect pests. Florida Entomologist, 75, 539–548.

    Google Scholar 

  • Barbercheck, M. E., & Kaya, H. K. (1990). Interactions between Beauveria bassiana and the entomogenous nematodes Steinernema feltiae and Heterorhabditis heliothidis. Journal of Invertebrate Pathology, 55, 225–234.

    Google Scholar 

  • Beck, B., Brusselman, E., Nuyttens, D., Moens, M., Pollet, S., Temmerman, F., et al. (2013). Improving foliar applications of entomopathogenic nematodes by selecting adjuvants and spray nozzles. Biocontrol Science and Technology, 23, 507–520.

    Google Scholar 

  • Bednarek, A., & Gaugler, R. (1997). Compatibility of soil amendments with entomopathogenic nematodes. Journal of Nematology, 29, 220–227.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Begley, J. W. (1990). Efficacy against insects in habitats other than soil. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 215–232). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Bellini, L., & Dolinski, C. (2012). Foliar application of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) for the control of Diatraea saccharalis in greenhouse. Semina: Ciencias Agrarias, 33, 997–1004.

    Google Scholar 

  • Benz, G. (1971). Synergism of micro-organisms and chemical insecticides. In H. D. Burgess & N. W. Hussey (Eds.), Microbial control of insects and mites (pp. 327–355). London: Academic.

    Google Scholar 

  • Berry, E. C., & Karlen, D. L. (1993). Comparison of alternate farming systems II. Earthworm population and density and species diversity. American Journal of Alternative Agriculture, 8, 21–26.

    Google Scholar 

  • Berry, R. E., Liu, J., & Groth, E. (1997). Efficacy and persistence of Heterorhabditis marelatus (Rhabditida: Heterorhabditidae) against root weevils (Coleoptera: Curculionidae) in strawberry. Environmental Entomology, 26, 465–470.

    Google Scholar 

  • Bilgrami, A. L., Gaugler, R., Shapiro-Ilan, D. I., & Adams, B. J. (2006). Source of trait deterioration in entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae during in vivo culture. Nematology, 8, 397–409.

    Google Scholar 

  • Brinkman, M. A., & Gardner, W. A. (2001). Use of diatomaceous earth and entomopathogen combinations against the red imported fire ant (Hymenoptera: Formicidae). Florida Entomologist, 84, 740–741.

    Google Scholar 

  • Bruck, D. J. (2004). Natural occurrence of entomopathogens in Pacific Northwest nursery soils and their virulence to the black vine weevil, Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae). Environmental Entomology, 33, 1335–1343.

    Google Scholar 

  • Brusselman, E., Beck, B., Pollet, S., Temmerman, F., Spanoghe, P., Moens, M., et al. (2012). Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables. Pest Management Science, 68, 444–453.

    CAS  PubMed  Google Scholar 

  • Brusselman, E., Beck, B., Temmerman, F., Pollet, S., Steurbaut, W., Moens, M., & Nuyttens, D. (2010). The spray pattern of entomopathogenic nematodes. American Society of Agricultural and Biological Engineers Annual International Meeting 2010, 6, 5054–5067.

    Google Scholar 

  • Bullock, R. C., Pelosi, R. R., & Killer, E. E. (1999). Management of citrus root weevils (Coleoptera: Curculionidae) on Florida citrus with soil-applied entomopathogenic nematodes (Nematoda: Rhabditida). Florida Entomologist, 82, 1–7.

    Google Scholar 

  • Cabanillas, H. E., & Raulston, J. R. (1995). Impact of Steinernema riobravis (Rhabditida: Steinernematidae) on the control of Helicoverpa zea (Lepidoptera: Noctuidae) in corn. Journal of Economic Entomology, 88, 58–64.

    Google Scholar 

  • Campos-Herrera, R., El-Borai, F. E., & Duncan, L. W. (2012). Wide interguild relationships among entomopathogenic and free–living nematodes in soil as measured by real time qPCR. Journal of Invertebrate Pathology, 111, 126–135.

    PubMed  Google Scholar 

  • Campos-Herrera, R., Gómez-Ros, J. M., Escuer, M., Cuadra, L., Barrios, L., & Gutiérrez, C. (2008). Diversity, occurrence, and life characteristics of natural entomopathogenic nematode populations from La Rioja (Northern Spain) under different agricultural management and their relationships with soil factors. Soil Biology & Biochemistry, 40, 1474–1484.

    CAS  Google Scholar 

  • Chang, F. N., & Gehret, M. J. (1991). An insect bait station comprising a hydrated macrogel layer containing at least one species of entomopathogen and a hydrated water retentive compound layer which acts as a water-reservoir for the entomopathogen. Patent WO 1991017656 A1.

    Google Scholar 

  • Chaston, J. M., Dillman, A. R., Shapiro-Ilan, D. I., Bilgrami, A. L., Gaugler, R., Hopper, K. R., et al. (2011). Outcrossing and crossbreeding recovers deteriorated traits in laboratory cultured Steinernema carpocapsae nematodes. International Journal of Parasitology, 41, 801–809.

    PubMed Central  PubMed  Google Scholar 

  • Ciche, T. A. (2007). The biology and genome of Heterorhabditis bacteriophora. In Worm Book [the Online Review of C. elegans biology]. WormBook. Retrieved form http://www.wormbook.org

  • Conner, J. M., McSorley, R., Stansly, P. A., & Pitts, D. J. (1998). Delivery of Steinernema riobrave through a drip irrigation system. Nematropica, 28, 95–100.

    Google Scholar 

  • Curran, J. (1992). Influence of application method and pest population size on field efficacy of entomopathogenic nematodes. Journal of Nematology, 24, 631–636.

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Waal, J. Y., Malan, A. P., & Addison, M. F. (2011). Evaluating mulches together with Heterorhabditis zealandica (Rhabditida: Heterorhabditidae) for the control of diapausing codling moth larvae, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Biocontrol Science and Technology, 21, 255–270.

    Google Scholar 

  • de Waal, J. Y., Malan, A. P., & Addison, M. F. (2013). Effect of humidity and a superabsorbent polymer formulation on the efficacy of Heterorhabditis zealandica (Rhabditida: Heterorhabditidae) to control codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Biocontrol Science and Technology, 23, 62–78.

    Google Scholar 

  • Del Valle, E. E., Dolinksi, C., Barreto, E. L. S., & Souza, R. M. (2009). Effect of cadaver coatings on emergence and infectivity of the entomopathogenic nematode Heterorhabditis baujardi LPP7 (Rhabditida: Heterorhabditidae) and the removal of cadavers by ants. Biological Control, 50, 21–24.

    Google Scholar 

  • Del Valle, E. E., Dolinski, C., Barreto, E. L. S., Souza, R. M., & Samuels, R. I. (2008). Efficacy of Heterorhabditis baujardi LPP7 (Nematoda: Rhabditida) applied in Galleria mellonella (Lepidoptera: Pyralidae) insect cadavers to Conotrachelus psidii, (Coleoptera: Curculionidae) larvae. Biocontrol Science and Technology, 18, 33–41.

    Google Scholar 

  • Dolinski, C., & Moino, A., Jr. (2006). Use of native and exotic entomopathogenic nematodes: The risk of introductions. Nematologia Brasileira, 30, 139–149.

    Google Scholar 

  • Dolinski, C., Pinto, C. C. S., Robaina, R. R., & Bellini, L. L. (2010). Effect of soil texture on the mobility of Heterorhabditis baujardi ‘LPP7’ (Rhabditida: Heterorhabditidae). Nematologia Brasileira, 34, 123–128.

    Google Scholar 

  • Downing, A. S. (1994). Effect of irrigation and spray volume on efficacy of entomopathogenic nematodes (Rhabditida: Heterorhabditidae) against white grubs (Coleoptera: Scarabaeidae). Journal of Economic Entomology, 87, 643–646.

    Google Scholar 

  • Duchaud, E., Rusniok, C., Frangeul, L., Buchrieser, C., Givaudan, A., Taourit, S., et al. (2003). The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nature Biotechnology, 21, 1307–1313.

    CAS  PubMed  Google Scholar 

  • Duncan, L. W., Dunn, D. C., Bague, G., & Nguyen, K. (2003). Competition between entomopathogenic and free-living bactivorous nematodes in larvae of the weevil Diaprepes abbreviatus. Journal of Nematology, 35, 187–193.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan, L. W., Graham, J. H., Zellers, J., Bright, D., Dunn, D. C., El-Borai, F. E., et al. (2007). Food web responses to augmenting the entomopathogenic nematodes in bare and animal manure-mulched soil. Journal of Nematology, 39(2), 176–189.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan, L. W., & McCoy, C. W. (1996). Vertical distribution in soil, persistence, and efficacy against citrus root weevil (Coleoptera: Curculionidae) of two species of entomogenous nematodes (Rhabditida: Steinernematidae; Heterorhabditidae). Environmental Entomology, 25, 174–178.

    Google Scholar 

  • Duncan, L. W., Shapiro, D. I., McCoy, C. W., & Graham, J. H. (1999). Entomopathogenic nematodes as a component of citrus root weevil IPM. In S. Polavarapu (Ed.), Optimal use of insecticidal nematodes in pest management (pp. 69–78). New Brunswick, NJ: Rutgers University.

    Google Scholar 

  • Duncan, L. W., Stuart, R. J., El-Borai, F. E., Campos-Herrera, R., Pathak, E., Giurcanu, M., et al. (2013). Modifying orchard planting sites conserves entomopathogenic nematodes, reduces weevil herbivory and increases citrus tree growth, survival and fruit yield. Biological Control, 64, 26–36.

    Google Scholar 

  • Edwards, C. A. (1983). Earthworm ecology in cultivated soils. In J. E. Satchell (Ed.), Earthworm ecology from darwin to vermiculture (pp. 123–138). London: Chapman and Hall.

    Google Scholar 

  • Ehlers, R.-U., & Shapiro-Ilan, D. I. (2005). Mass production. In P. S. Grewal, R.-U. Ehlers, & D. I. Shapiro-Ilan (Eds.), Nematodes as biological control agents (pp. 65–79). Wallingford, UK: CABI.

    Google Scholar 

  • Eng, M. S., Preisser, E. L., & Strong, D. R. (2005). Phoresy of the entomopathogenic nematode Heterorhabditis marelatus by a non-host organism, the isopod Porcellio scaber. Journal of Invertebrate Pathology, 88, 173–176.

    PubMed  Google Scholar 

  • Epsky, N. D., Walter, D. E., & Capinera, J. L. (1988). Potential role of nematophagous microarthropods as biotic mortality factors of entomogenous nematodes (Rhabditida: Steinernematidae, Heterorhabditidae). Journal of Economic Entomology, 81, 821–825.

    Google Scholar 

  • Fife, J. P., Derksen, R. C., Ozkan, H. E., & Grewal, P. S. (2003). Effects of pressure differentials on the viability and infectivity of entomopathogenic nematodes. Biological Control, 27, 65–72.

    Google Scholar 

  • Fife, J. P., Ozkan, H. E., Derksen, R. C., & Grewal, P. S. (2006). Using computational fluid dynamics to predict damage of a biological pesticide during passage through a hydraulic nozzle. Biosystems Engineering, 94, 387–396.

    Google Scholar 

  • Fife, J. P., Ozkan, H. E., Derksen, R. C., & Grewal, P. S. (2007). Effects of pumping on entomopathogenic nematodes and temperature increase within a spray system. Applied Engineering in Agriculture, 23, 405–412.

    Google Scholar 

  • Fife, J. P., Ozkan, H. E., Derksen, R. C., Grewal, P. S., & Krause, C. R. (2005). Viability of a biological pest control agent through hydraulic nozzles. Transactions of the ASAE, 48, 45–54.

    Google Scholar 

  • Gaugler, R. (1987). Entomogenous nematodes and their prospects for genetic improvement. In K. Maramorosch (Ed.), Biotechnology in invertebrate pathology and cell culture (pp. 457–484). San Diego, CA: Academic.

    Google Scholar 

  • Gaugler, R., & Boush, G. M. (1978). Effects of ultraviolet radiation and sunlight on the entomogenous nematode Neoaplectana carpocapsae. Journal of Invertebrate Pathology, 32, 291–296.

    Google Scholar 

  • Gaugler, R., Campbell, J. F., & McGuire, T. R. (1989). Selection for host-finding in Steinernema feltiae. Journal of Invertebrate Pathology, 54, 363–372.

    Google Scholar 

  • Gaugler, R., Campbell, J. F., & McGuire, T. R. (1990). Fitness of a genetically improved entomopathogenic nematode. Journal of Invertebrate Pathology, 56, 106–116.

    Google Scholar 

  • Gaugler, R., Wilson, M., & Shearer, P. (1997). Field release and environmental fate of a transgenic entomopathogenic nematode. Biological Control, 9, 75–80.

    Google Scholar 

  • Georgis, R. (1990). Formulation and application technology. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 173–194). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Georgis, R., Dunlop, D. B., & Grewal, P. S. (1995). Formulation of entomopathogenic nematodes. In F. R. Hall & J. W. Barry (Eds.), Biorational pest control agents: Formulation and delivery (pp. 197–205). Washington, DC: American Chemical Society.

    Google Scholar 

  • Georgis, R., & Gaugler, R. (1991). Predictability in biological control using entomopathogenic nematodes. Journal of Economic Entomology, 84, 713–720.

    Google Scholar 

  • Georgis, R., & Hague, N. G. M. (1991). Nematodes as biological insecticides. Pesticide Outlook, 3, 29–32.

    Google Scholar 

  • Georgis, R., & Poinar, G. O., Jr. (1983). Effect of soil texture on the distribution and infectivity of Neoaplectana carpocapsae (Nematode: Steinernematidae). Journal of Nematology, 15, 308–311.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glazer, I., Salame, L., & Segal, D. (1997). Genetic enhancement of nematicide resistance in entomopathogenic nematodes. Biocontrol Science and Technology, 7, 499–512.

    Google Scholar 

  • Grewal, P. S. (2002). Formulation and application technology. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 265–287). New York: CABI.

    Google Scholar 

  • Grewal, P. S., Ehlers, R.-U., & Shapiro-Ilan, D. I. (Eds.). (2005). Nematodes as biological control agents. Wallingford, UK: CABI.

    Google Scholar 

  • Grewal, P. S., & Georgis, R. (1999). Entomopathogenic nematodes. In F. R. Hall & J. J. Menn (Eds.), Methods in biotechnology, vol 5: Biopesticides: Use and delivery (pp. 271–299). Totowa, NJ: Humana Press.

    Google Scholar 

  • Grewal, P. S., Selvan, S., & Gaugler, R. (1994). Thermal adaptation of entomopathogenic nematodes – Niche breadth for infection, establishment and reproduction. Journal of Thermal Biology, 19, 245–253.

    Google Scholar 

  • Hayes, A. E., Fitzpatrick, S. M., & Webster, J. M. (1999). Infectivity, distribution, and persistence of the entomopathogenic nematode Steinernema carpocapsae All strain (Rhabditida: Steinernematidae) applied by sprinklers or boom sprayer to dry-pick cranberries. Journal of Economic Entomology, 92, 539–546.

    CAS  PubMed  Google Scholar 

  • Head, J., Lawrence, A. J., & Walters, K. F. A. (2004). Efficacy of the entomopathogenic nematode, Steinernema feltiae, against Bemisia tabaci in relation to plant species. Journal of Applied Entomology, 128, 543–547.

    Google Scholar 

  • Hiltpold, I., Hibbard, B. E., French, B. W., & Turlings, T. C. J. (2012). Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the western corn rootworm. Plant and Soil, 358, 11–25.

    CAS  Google Scholar 

  • Hopper, K. R., Roush, R. T., & Powell, W. (1993). Management of genetics of biological-control introductions. Annual Review of Entomology, 38, 27–51.

    Google Scholar 

  • Kanga, F. N., Waeyenberge, L., Hauser, S., & Moens, M. (2012). Distribution of entomopathogenic nematodes in Southern Cameroon. Journal of Invertebrate Pathology, 109, 41–51.

    PubMed  Google Scholar 

  • Kaya, H. K. (1990). Soil ecology. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 93–116). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Kaya, H. K. (2002). Natural enemies and other antagonists. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 189–204). New York: CABI.

    Google Scholar 

  • Kaya, H. K., & Nelsen, C. E. (1985). Encapsulation of steinernematid and heterorhabditid nematodes with calcium alginate: A new approach for insect control and other applications. Environmental Entomology, 14, 572–574.

    Google Scholar 

  • Klein, M. G., & Georgis, R. (1992). Persistence of control of Japanese beetle (Coleoptera: Scarabaeidae) larvae with steinernematid and heterorhabditid nematodes. Journal of Economic Entomology, 85, 727–730.

    Google Scholar 

  • Klein, M. G., & Georgis, R. (1994). Application techniques for entomopathogenic nematodes. In: Proceedings of the VI international colloquium on invertebrate pathology and microbial control (pp. 483–484). Montpellier, France: Society for Invertebrate Pathology.

    Google Scholar 

  • Koppenhöfer, A. M., & Fuzy, E. M. (2008). Early timing and new combinations to increase the efficacy of neonicotinoid–entomopathogenic nematode (Rhabditida: Heterorhabditidae) combinations against white grubs (Coleoptera: Scarabaeidae). Pest Management Science, 64, 725–735.

    PubMed  Google Scholar 

  • Koppenhöfer, A. M., & Grewal, P. S. (2005). Compatibility and interactions with agrochemicals and other biocontrol agents. In P. S. Grewal, R.-U. Ehlers, & D. I. Shapiro-Ilan (Eds.), Nematodes as biological control agents (pp. 363–381). Wallingford, UK: CABI.

    Google Scholar 

  • Koppenhöfer, A. M., & Kaya, H. K. (1997). Additive and synergistic interactions between entomopathogenic nematodes and Bacillus thuringiensis for scarab grub control. Biological Control, 8, 131–137.

    Google Scholar 

  • Koppenhöfer, A. M., & Kaya, H. K. (1998). Synergism of imidacloprid and an entomopathogenic nematode: A novel approach to white grub (Coleoptera: Scarabaeidae) control in turfgrass. Journal of Economic Entomology, 91, 618–623.

    Google Scholar 

  • Koppenhöfer, A. M., Kaya, H. K., & Taormino, S. P. (1995). Infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae) at different soil depths and moistures. Journal of Invertebrate Pathology, 65, 193–199.

    Google Scholar 

  • Kruitbos, L. M., Heritage, S., Hapca, S., & Wilson, M. J. (2010). The influence of habitat quality on the foraging strategies of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis. Parasitology, 137, 303–309.

    CAS  PubMed  Google Scholar 

  • Kung, S., Gaugler, R., & Kaya, H. K. (1990a). Influence of soil pH and oxygen on persistence of Steinernema spp. Journal of Nematology, 22, 440–445.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kung, S., Gaugler, R., & Kaya, H. K. (1990b). Soil type and entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 55, 401–406.

    Google Scholar 

  • Kung, S., Gaugler, R., & Kaya, H. K. (1991). Effects of soil temperature, moisture, and relative humidity on entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 57, 242–249.

    Google Scholar 

  • Lacey, L. A., Arthurs, S. P., Granatstein, D., Headrick, H., & Fritts, R., Jr. (2006). Use of entomopathogenic nematodes (Steinernematidae) in conjunction with mulches for control of codling moth (Lepidoptera: Torticidae). Journal of Entomological Science, 41, 107–119.

    Google Scholar 

  • Lacey, L. A., Arthurs, S. P., Unruh, T. R., Headrick, H., & Fritts, R., Jr. (2006). Entomopathogenic nematodes for control of codling moth (Lepidoptera: Tortricidae) in apple and pear orchards: effect of nematode species and seasonal temperatures, adjuvants, application equipment and post-application irrigation. Bio logical Control, 37, 214–223.

    Google Scholar 

  • Lacey, L. A., Shapiro-Ilan, D. I., & Glenn, G. M. (2010). Post-application of anti-desiccant agents improves efficacy of entomopathogenic nematodes in formulated host cadavers or aqueous suspension against diapausing codling moth larvae (Lepidoptera: Tortricidae). Biocontrol Science and Technology, 20, 909–921.

    Google Scholar 

  • Lanzoni, A., Ade, G., Martelli, R., Radeghieri, P., & Pezzi, F. (2014). Technological aspects of Steinernema carpocapsae spray application alone or mixed with Bacillus thuringiensis aizawai in spinach crop. Bulletin of Insectology, 67, 115–123.

    Google Scholar 

  • Lara, J. C., Dolinski, C., Sousa, E. F., & Daher, R. F. (2008). Effect of mini-sprinkler irrigation system on Heterorhabditis baujardiLPP7 (Nematoda: Heterorhabditidae) infective juvenile. Scientia Agricola, 65, 433–437.

    Google Scholar 

  • Levine, E., & Oloumi-Sadeghi, H. (1992). Field evaluation of Steinernema carpocapsae (Rhabditida: Steinernematidae) against the black cutworm (Lepidoptera: Noctuidae) larvae in field corn. Journal of Entomological Science, 27, 427–435.

    Google Scholar 

  • Lewis, E. E. (2002). Behavioral ecology. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 205–224). Wallingford, UK: CABI.

    Google Scholar 

  • Lewis, E. E., & Clarke, D. J. (2012). Nematode parasites and entomopathogens. In F. E. Vega & H. K. Kaya (Eds.), Insect pathology (2nd ed., pp. 395–424). Amsterdam: Elsevier.

    Google Scholar 

  • Lewis, E. E., Gaugler, R., & Harrison, R. (1992). Entomopathogenic nematode host finding: Response to host contact cues by cruise and ambush foragers. Parasitology, 105, 309–319.

    Google Scholar 

  • Malan, A. P., Knoetze, R., & Moore, S. D. (2011). Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. Journal of Invertebrate Pathology, 108, 115–125.

    PubMed  Google Scholar 

  • Matadamas-Ortiz, P. T., Ruiz-Vega, J., Vazquez-Feijoo, J. A., Cruz-Martínez, H., & Cortés-Martínez, C. I. (2014). Mechanical production of pellets for the application of entomopathogenic nematodes: Factors that determine survival time of Steinernema glaseri. Biocontrol Science and Technology, 24, 145–157.

    Google Scholar 

  • Mbata, G. N., & Shapiro-Ilan, D. I. (2013). The potential for controlling Pangaeus bilineatus (Say) (Heteroptera: Cydnidae) using a combination of entomopathogens and an insecticide. Journal of Economic Entomology, 106, 2072–2076.

    PubMed  Google Scholar 

  • McCoy, C. W., Shapiro, D. I., Duncan, L. W., & Nguyen, K. (2000). Entomopathogenic nematodes and other natural enemies as mortality factors for larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae). Biological Control, 19, 182–190.

    Google Scholar 

  • Millar, L. C., & Barbercheck, M. E. (2001). Interaction between endemic and introduced entomopathogenic nematodes in conventional-till and no-till corn. Biological Control, 22, 235–245.

    Google Scholar 

  • Molyneux, A. S., & Bedding, R. A. (1984). Influence of soil texture and moisture on the infectivity of Heterorhabditis sp. D1 and Steinernema glaseri for larvae of the sheep blowfly Lucilia cuprina. Nematologica, 30, 358–365.

    Google Scholar 

  • Morales-Rodriguez, A., & Peck, D. C. (2009). Synergies between biological and neonicotinoid insecticides for the curative control of the white grubs Amphimallon majale and Popillia japonica. Biological Control, 51, 169–180.

    CAS  Google Scholar 

  • Moreira, G. F., Batista, E. S. P., Campos, H. B. N., Lemos, R. E., & Ferreira, M. C. (2013). Spray nozzles, pressures, additives and stirring time on viability and pathogenicity of entomopathogenic nematodes (Nematoda: Rhabditida) for greenhouses. PLoS One, 8(6), e65759.

    Google Scholar 

  • Mukuka, J., Strauch, O., Hoppe, C., & Ehlers, R.-U. (2010). Improvement of heat and desiccation tolerance in Heterorhabditis bacteriophora through cross-breeding of tolerant strains and successive genetic selection. BioControl, 55, 511–521.

    Google Scholar 

  • Navarro, P. D., McMullen, J. G., & Stock, S. P. (2014). Effect of dinotefuran, indoxacarb, and imidacloprid on survival and fitness of two Arizona-native entomopathogenic nematodes against Helicoverpa zea (Lepidoptera: Noctuidae). Nematropica, 44, 64–73.

    Google Scholar 

  • Nielsen, A. L., & Lewis, E. E. (2012). Designing the ideal habitat for entomopathogen use in nursery production. Pest Management Science, 68, 1053–1061.

    CAS  PubMed  Google Scholar 

  • Nilsson, U., & Gripwall, E. (1999). Influence of application technique on the viability of the biological control agents Verticillium lecanii and Steinernema feltiae. Crop Protection, 18, 53–59.

    Google Scholar 

  • Nishimatsu, T., & Jackson, J. J. (1998). Interaction of insecticides, entomopathogenic nematodes, and larvae of the western corn rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 91, 410–418.

    CAS  PubMed  Google Scholar 

  • Nugent, M. J., O’Leary, S. A., & Burnell, A. M. (1996). Optimised procedures for the cryopreservation of different species of Heterorhabditis. Fundamental and Applied Nematology, 19, 1–6.

    Google Scholar 

  • Parkman, J. P., Frank, J. H., Nguyen, K. B., & Smart, G. C., Jr. (1994). Inoculative release of Steinernema scapterisci (Rhabditida: Steinernematidae) to suppress pest mole crickets (Orthoptera: Gryllotapidae) on golf courses. Environmental Entomology, 23, 1331–1337.

    Google Scholar 

  • Schroeder, P. D., Ferguson, C. S., Shelton, A. M., Wilsey, W. T., Hoffman, M. P., & Petzoldt, C. (1996). Greenhouse and field evaluations of entomopathogenic nematodes (Nematoda: Heterorhabditidae and Steinernematidae) for control of cabbage maggot (Diptera: Anthomyiidae) on cabbage. Journal of Economic Entomology, 89, 1109–1115.

    CAS  PubMed  Google Scholar 

  • Schroer, S., & Ehlers, R.-U. (2005). Foliar application of the entomopathogenic nematode Steinernema carpocapsae for biological control of diamondback moth larvae (Plutella xylostella). Biological Control, 33, 81–86.

    Google Scholar 

  • Schwartz, H. T., Antoshechkin, I., & Sternberg, P. W. (2011). Applications of high-throughput sequencing to symbiotic nematodes of the genus Heterorhabditis. Symbiosis, 55, 111–118.

    CAS  Google Scholar 

  • Shapiro, D. I., Glazer, I., & Segal, D. (1996). Trait stability in and fitness of the heat tolerant entomopathogenic nematode Heterorhabditis bacteriophora IS5 strain. Biological Control, 6, 238–244.

    Google Scholar 

  • Shapiro, D. I., Glazer, I., & Segal, D. (1997). Genetic improvement of heat tolerance in Heterorhabditis bacteriophora through hybridization. Biological Control, 8, 153–159.

    Google Scholar 

  • Shapiro, D. I., & McCoy, C. W. (2000). Virulence of entomopathogenic nematodes to Diaprepes abbreviatus (Coleoptera: Curculionidae) in the laboratory. Journal of Economic Entomology, 93, 1090–1095.

    CAS  PubMed  Google Scholar 

  • Shapiro, D. I., McCoy, C. W., Fares, A., Obreza, T., & Dou, H. (2000). Effects of soil type on virulence and persistence of entomopathogenic nematodes in relation to control of Diaprepes abbreviatus. Environmental Entomology, 29, 1083–1087.

    Google Scholar 

  • Shapiro, D. I., Obrycki, J. J., Lewis, L. C., & Abbas, M. (1999). The effects of fertilizers on black cutworm, Agrotis ipsilon, (Lepidoptera: Noctuidae) suppression by Steinernema carpocapsae. Journal of Nematology, 31, 690–693.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro, D. I., Obrycki, J. J., Lewis, L. C., & Jackson, J. J. (1999). Effects of crop residue on the persistence of Steinernema carpocapsae. Journal of Nematology, 31, 517–519.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro, D. I., Tylka, G. L., Berry, E. C., & Lewis, L. C. (1995). Effects of earthworms on the dispersal of Steinernema spp. Journal of Nematology, 27, 21–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro, D. I., Tylka, G. L., & Lewis, L. C. (1996). Effects of fertilizers on virulence of Steinernema carpocapsae. Applied Soil Ecology, 3, 27–34.

    Google Scholar 

  • Shapiro-Ilan, D. I., & Brown, I. (2013). Earthworms as phoretic hosts for Steinernema carpocapsae and Beauveria bassiana: Implications for enhanced biological control. Biological Control, 66, 41–48.

    Google Scholar 

  • Shapiro-Ilan, D. I., Brown, I., & Lewis, E. E. (2014). Freezing and desiccation tolerance in entomopathogenic nematodes: Diversity and correlation of traits. Journal of Nematology, 46, 27–34.

    PubMed Central  PubMed  Google Scholar 

  • Shapiro-Ilan, D. I., Bruck, D. J., & Lacey, L. A. (2012). Principles of epizootiology and microbial control. In F. E. Vega & H. K. Kaya (Eds.), Insect pathology (2nd ed., pp. 29–72). Amsterdam: Elsevier.

    Google Scholar 

  • Shapiro-Ilan, D. I., Cottrell, T. E., Mizell, R. F., Horton, D. L., Behle, R. W., & Dunlap, C. A. (2010). Efficacy of Steinernema carpocapsae for control of the lesser peachtree borer, Synanthedon pictipes: Improved aboveground suppression with a novel gel application. Biological Control, 54, 23–28.

    Google Scholar 

  • Shapiro-Ilan, D. I., Cottrell, T. E., Mizell, R. F., Horton, D. L., & Zaid, A. (2015). Field suppression of the peachtree borer, Synanthedon exitiosa, using Steinernema carpocapsae: Effects of irrigation, a sprayable gel and application method. Biological Control, 82, 7–12.

    Google Scholar 

  • Shapiro-Ilan, D. I., Cottrell, T. E., Mizell, R. F., III, Horton, D. L., & Davis, J. (2009). A novel approach to biological control with entomopathogenic nematodes: Prophylactic control of the peachtree borer, Synanthedon exitiosa. Biological Control, 48, 259–263.

    Google Scholar 

  • Shapiro-Ilan, D. I., Cottrell, T. E., & Wood, B. W. (2011). Effects of combining microbial and chemical insecticides on mortality of the pecan weevil (Coleoptera: Curculionidae). Journal of Economic Entomology, 104, 14–20.

    PubMed  Google Scholar 

  • Shapiro-Ilan, D. I., Gardner, W. A., Fuxa, J. R., Wood, B. W., Nguyen, K. B., Adams, B. J., et al. (2003). Survey of entomopathogenic nematodes and fungi endemic to pecan orchards of the Southeastern United States and their virulence to the pecan weevil (Coleoptera: Curculionidae). Environmental Entomology, 32, 187–195.

    Google Scholar 

  • Shapiro-Ilan, D. I., Gouge, D. H., & Koppenhöfer, A. M. (2002). Factors affecting commercial success: Case studies in cotton, turf and citrus. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 333–355). New York: CABI.

    Google Scholar 

  • Shapiro-Ilan, D. I., Gouge, G. H., Piggott, S. J., & Patterson Fife, J. (2006). Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biological Control, 38, 124–133.

    Google Scholar 

  • Shapiro-Ilan, D. I., Han, R., & Dolinski, C. (2012). Entomopathogenic nematode production and application technology. Journal of Nematology, 44, 206–217.

    PubMed Central  PubMed  Google Scholar 

  • Shapiro-Ilan, D. I., Han, R., & Qiu, X. (2014). Production of entomopathogenic nematodes. In J. Morales-Ramos, G. Rojas, & D. I. Shapiro-Ilan (Eds.), Mass production of beneficial organisms: Invertebrates and entomopathogens (pp. 321–356). Amsterdam: Academic.

    Google Scholar 

  • Shapiro-Ilan, D. I., Jackson, M., Reilly, C. C., & Hotchkiss, M. W. (2004). Effects of combining an entomopathogenic fungi or bacterium with entomopathogenic nematodes on mortality of Curculio caryae (Coleoptera: Curculionidae). Biological Control, 30, 119–126.

    Google Scholar 

  • Shapiro-Ilan, D. I., Leskey, T. C., & Wright, S. E. (2011). Virulence of entomopathogenic nematodes to plum curculio, Conotrachelus nenuphar: Effects of strain, temperature, and soil type. Journal of Nematology, 43, 187–195.

    PubMed Central  PubMed  Google Scholar 

  • Shapiro-Ilan, D. I., Lewis, E. E., Behle, R. W., & McGuire, M. R. (2001). Formulation of entomopathogenic nematode-infected-cadavers. Journal of Invertebrate Pathology, 78, 17–23.

    CAS  PubMed  Google Scholar 

  • Shapiro-Ilan, D. I., Lewis, E. E., & Tedders, W. L. (2003). Superior efficacy observed in entomopathogenic nematodes applied in infected-host cadavers compared with application in aqueous suspension. Journal of Invertebrate Pathology, 83, 270–272.

    PubMed  Google Scholar 

  • Shapiro-Ilan, D. I., Mizell, R. F., III, Cottrell, T. E., & Horton, D. L. (2004). Measuring field efficacy of Steinernema feltiae and Steinernema riobrave for suppression of plum curculio, Conotrachelus nenuphar, larvae. Biological Control, 30, 496–503.

    Google Scholar 

  • Shapiro-Ilan, D. I., Morales-Ramos, J. A., Rojas, M. G., & Tedders, W. L. (2010). Effects of a novel entomopathogenic nematode–infected host formulation on cadaver integrity, nematode yield, and suppression of Diaprepes abbreviatus and Aethina tumida under controlled conditions. Journal of Invertebrate Pathology, 103, 103–108.

    PubMed  Google Scholar 

  • Shapiro-Ilan, D. I., Stuart, R. J., & McCoy, C. W. (2005). Targeted improvement of Steinernema carpocapsae for control of the pecan weevil, Curculio caryae (Horn) (Coleoptera: Curculionidae) through hybridization and bacterial transfer. Biological Control, 34, 215–221.

    Google Scholar 

  • Shapiro-Ilan, D. I., Stuart, R. J., & McCoy, C. W. (2006). A comparison of entomopathogenic nematode longevity in soil under laboratory conditions. Journal of Nematology, 38, 119–129.

    PubMed Central  PubMed  Google Scholar 

  • Shapiro-Ilan, D. I., Wright, S. E., Tuttle, A. F., Cooley, D. R., & Leskey, T. C. (2013). Using entomopathogenic nematodes for biological control of plum curculio, Conotrachelus nenuphar: Effects of irrigation and species in apple orchards. Biological Control, 67, 123–129.

    Google Scholar 

  • Shetlar, D. J., Suleman, P. E., & Georgis, R. (1988). Irrigation and use of entomogenous nematodes, Neoaplectana spp. and Heterorhabditis heliothidis (Rhabditida: Steinernematidae and Heterorhabditidae), for control of Japanese beetle (Coleoptera: Scarabaeidae) grubs in turfgrass. Journal of Economic Entomology, 81, 1318–1322.

    Google Scholar 

  • Shields, E. J., Testa, A., Miller, J. M., & Flanders, K. L. (1999). Field efficacy and persistence of the entomopathogenic nematodes Heterorhabditis bacteriophora ‘Oswego’ and H. bacteriophora ‘NC’ on Alfalfa snout beetle larvae (Coleoptera: Curculionidae). Environmental Entomology, 28, 128–136.

    Google Scholar 

  • Tanada, Y., & Kaya, H. K. (1993). Insect pathology. San Diego, CA: Academic.

    Google Scholar 

  • Thurston, G. S., Kaya, H. K., & Gaugler, R. (1994). Characterizing the enhanced susceptibility of milky disease-infected scarabaeid grubs to entomopathogenic nematodes. Biological Control, 4, 67–73.

    Google Scholar 

  • Toepfer, S., Peters, A., Ehlers, R.-U., & Kuhlmann, U. (2008). Comparative assessment of the efficacy of entomopathogenic nematode species at reducing western corn rootworm larvae and root damage in maize. Journal of Applied Entomology, 132, 337–348.

    Google Scholar 

  • Ulug, D., Hazir, S., Kaya, H. K., & Lewis, E. E. (2014). Natural enemies of natural enemies: the potential top-down impact of predators on entomopathogenic nematode populations. Ecological Entomology, 39, 462–469.

    Google Scholar 

  • Wallace, H. R. (1958). Movement of eelworms. Annals of Applied Biology, 46, 74–85.

    Google Scholar 

  • Wang, X., & Grewal, P. S. (2002). Rapid genetic deterioration of environmental tolerance and reproductive potential of an entomopathogenic nematode during laboratory maintenance. Biological Control, 23, 71–78.

    CAS  Google Scholar 

  • Wang, Y., Bilgrami, A. L., Shapiro-Ilan, D., & Gaugler, R. (2007). Stability of entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens, during In Vitro culture. Journal of Industrial Microbiology and Biotechnology, 34, 73–81.

    Google Scholar 

  • Williams, C. D., Dillon, A. B., Harvey, C. D., Hennessy, R., Namara, L. M., & Griffin, C. T. (2013). Control of a major pest of forestry, Hylobius abietis, with entomopathogenic nematodes and fungi using eradicant and prophylactic strategies. Forest Ecology and Management, 305, 212–222.

    Google Scholar 

  • Williams, E. C., & Walters, K. F. A. (2000). Foliar application of the entomopathogenic nematode Steinernema feltiae against leaf miners on vegetables. Biocontrol Science and Technology, 10, 61–70.

    Google Scholar 

  • Wilson, M., & Gaugler, R. (2004). Factors limiting short-term persistence of entomopathogenic nematodes. Journal of Applied Entomology, 128, 250–253.

    Google Scholar 

  • Womersley, C. Z. (1993). Factors affecting physiological fitness and modes of survival employed by dauer juveniles and their relationship to pathogenicity. In R. Bedding, R. Akhurst, & H. Kaya (Eds.), Nematodes for the biological control of insects (pp. 79–88). East Melbourne, Australia: CSIRO Press.

    Google Scholar 

  • Zimmerman, R. J., & Cranshaw, W. S. (1991). Short-term movement of Neoaplectana spp. (Rhabditida: Steinernematidae) and Heterorhabditis “HP-88” strain (Rhabditida: Heterorhabditidae) through turfgrass thatch. Journal of Economic Entomology, 84, 875–878.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Shapiro-Ilan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shapiro-Ilan, D., Dolinski, C. (2015). Entomopathogenic Nematode Application Technology. In: Campos-Herrera, R. (eds) Nematode Pathogenesis of Insects and Other Pests. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-18266-7_9

Download citation

Publish with us

Policies and ethics