Skip to main content

Trophic Relationships of Entomopathogenic Nematodes in Agricultural Habitats

  • Chapter
Book cover Nematode Pathogenesis of Insects and Other Pests

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Entomopathogenic nematodes (EPNs) play several roles in the soil ecosystem. While EPNs are generally thought of in the context of reducing the density of pest populations when they are applied, they are also natural components of soil food webs and exert considerable influence on the population dynamics of many players in the system in addition to the intended targets of biological control efforts (Hodson, Siegel, & Lewis, 2012). They are lethal parasites of insects, but not all of the species they infect are the targets for which they are applied. They are also prey and hosts to a variety of other soil organisms. Here, we attempt explain the fate of EPNs after they are applied to soil in the context of the complicated interactions among members of soil food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bastidas, B., Edgar, P., & San Blas, E. (2014). Size does matter: The life cycle of Steinernema spp. in micro–insect hosts. Journal of Invertebrate Pathology, 121, 46–55.

    PubMed  Google Scholar 

  • Bathon, H. (1996). Impact of entomopathogenic nematodes on non–target hosts. Biocontrol Science and Technology, 6, 421–434.

    Google Scholar 

  • Baur, M. E. & Kaya, H. K. (2001). Persistence of entomopathogenic nematodes. In Baur, M. E. & Fuxa J. R. (Eds.), Southern Cooperative Series Bulletin (26 pp.). http://www.agctr.lsu.edu/s265/Baur.

  • Baur, M. E., Kaya, H. K., & Strong, D. R. (1998). Foraging ants as scavengers on entomopathogenic nematode–killed insects. Biological Control 12, 231–236.

    Google Scholar 

  • Bedding, R. A., & Molyneux, A. S. (1983). Penetration of insect cuticle by infective juvenile of Heterorhabditis spp. (Heterorhabditidae: Nematoda). Nematologica, 28, 354–359.

    Google Scholar 

  • Bode, H. B. (2009). Entomopathogenic bacteria as a source of secondary metabolites. Current Opinion in Chemical Biology, 13, 1–7.

    Google Scholar 

  • Boemare, N. (2002). Biology, taxonomy, and systematics of Photorhabdus and Xenorhabdus. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 35–56). New York: CABI.

    Google Scholar 

  • Boemare, N., & Akhurst, R. (2006). The genera Photorhabdus and Xenorhabdus. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The prokaryotes 6 (pp. 451–494). New York: Springer Science + Business Media, Inc.

    Google Scholar 

  • Boemare, N. E., Boyer-Giglio, M.–. H., Thaler, J.–. O., Akhurst, R. J., & Brehelin, M. (1992). Lysogeny and bacteriocinogeny in Xenorhabdus nematophilus and other Xenorhabdus spp. Applied and Environmental Microbiology, 58, 3032–3037.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boemare, N. E., Givaudan, A., Brehelin, M., & Laumond, C. (1997). Symbiosis and pathogenicity of nematode–bacterium complexes. Symbiosis, 22, 21–45.

    Google Scholar 

  • Böszörményi, E., Ersek, T., Fodor, A., Fodor, A. M., Földes, L. S., Hevesi, M., et al. (2009). Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. Journal of Applied Microbiology, 107, 746–759.

    PubMed  Google Scholar 

  • Bowen, D. J., & Ensign, J. C. (1998). Purification and characterization of a high molecular weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Applied Environmental Microbiology, 64, 3029–3035.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brachmann, A. O., Bode, H. B., Joyce, S. A., Jenke-Kodama, H., Schwär, G., & Clarke, D. J. (2007). A type II polyketide synthase is responsible for anthraquinone biosynthesis in Photorhabdus luminescens. ChemBioChem, 24, 1721–1728.

    Google Scholar 

  • Brachmann, A. O., Forst, S., Furgani, G. M., Fodor, A., & Bode, H. B. (2006). Xenofuranones A and B: Phenylpyruvate dimers from Xenorhabdus szentirmaii. Journal of Natural Products, 69, 1830–1832.

    CAS  PubMed  Google Scholar 

  • Brivio, M. F., Mastore, M., & Nappi, A. J. (2010). A pathogenic parasite interferes with phagocytosis of insect immunocompetent cells. Developmental and Comparative Immunology, 34, 991–998.

    CAS  PubMed  Google Scholar 

  • Brivio, M. F., Pagani, M., & Restelli, S. (2002). Immune suppression of Galleria mellonella (Insecta, Lepidoptera) humoral defenses induced by Steinernema feltiae (Nematoda: Rhabditida): Involvement of the parasite cuticle. Experimental Parasitology, 101, 149–156.

    CAS  PubMed  Google Scholar 

  • Buck, M., & Bathon, H. (1993). Effects of a field application of entomopathogenic nematodes (Heterorhabditis sp.) on the non–target fauna, Part 2: Diptera. Anzeiger Fur Schadlingskunde Pflanzenschutz Umweltschultz, 66, 84–88.

    Google Scholar 

  • Cakmak, I., Ekmen, Z. I., Karagoz, M., Hazir, S., & Kaya, H. K. (2010). Development and reproduction of Sancassania polyphyllae (Acari: Acaridae) feeding on entomopathogenic nematodes and tissues of insect larvae. Pedobiologia, 53, 235–240.

    Google Scholar 

  • Cakmak, I., Karagoz, M., Ekmen, Z. I., Hazir, S., & Kaya, H. K. (2011). Life history of Sancassania polyphyllae (Acari: Acaridae) feeding on dissected tissues of its phoretic host, Polyphylla fullo (Coleoptera: Scarabaeidae): Temperature effects. Experimental and Applied Acarology, 53, 41–49.

    PubMed  Google Scholar 

  • Cakmak, I., Hazir, S., Ulug, D., & Karagoz, M. (2013). Olfactory response of Sancassania polyphyllae (Acari: Acaridae) to its phoretic host larva killed by the entomopathogenic nematode, Steinernema glaseri (Rhabditida: Steinernematidae). Biological Control, 65, 212–217.

    Google Scholar 

  • Campbell, J. F., & Gaugler, R. (1993). Nictation behavior and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematodidae). Behaviour, 126, 155–169.

    Google Scholar 

  • Campbell, J. F., & Gaugler, R. (1997). Inter–specific variation in entomopathogenic nematode. Foraging strategy: Dichotomy or variation along a continuum? Fundamental and Applied Nematology, 20, 393–398.

    Google Scholar 

  • Campbell, J. F., & Kaya, H. K. (2000). Influence of insect–associated cues on the jumping behavior of entomopathogenic nematodes (Steinernema spp.). Behaviour, 137(5), 591–609.

    Google Scholar 

  • Castillo, J. C., Reynolds, S. E., & Eleftherianos, I. (2011). Insect immune responses to nematode parasites. Trends in Parasitology, 27, 537–547.

    CAS  PubMed  Google Scholar 

  • Christen, J. M., Campbell, J. F., Lewis, E. E., Shapiro-Ilan, D. I., & Ramaswamy, S. B. (2007). Responses of the entomopathogenic nematode, Steinernema riobrave to its insect hosts, Galleria mellonella and Tenebrio molitor. Parasitology, 134, 889–898.

    CAS  PubMed  Google Scholar 

  • Ciche, T. A., Blackburn, M., Carney, J. R., & Ensign, J. C. (2003). Photobactin: A catechol siderophore produced by Photorhabdus luminescens, an Entomopathogen Mutually Associated with Heterorhabditis bacteriophora NC1 Nematodes. Applied Environmental Microbiology, 69, 4706–4713.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cox-Foster, D. L., & Stehr, J. E. (1994). Induction and localization of FAD–Glucose Dehydrogenase (GLD) during encapsulation of abiotic implants in Manduca sexta larvae. Journal of Insect Physiology, 40(3), 235–250.

    CAS  Google Scholar 

  • Daw, M. A., & Falkiner, F. R. (1996). Acteriocins: Nature, function and structure. Micron, 27, 467–479.

    CAS  PubMed  Google Scholar 

  • de Doucet, M. M., Bertolotti, M. A., Giayetto, A. L., & Miranda, M. B. (1999). Host range, specificity, and virulence of Steinernema feltiae, Steinernema rarum, and Heterorhabditis bacteriophora (Steinernematidae and Heterorhabditidae) from Argentina. Journal of Invertebrate Pathology, 73, 237–242.

    PubMed  Google Scholar 

  • Demarta, L., Hibbard, B. E., Bohn, M. O., & Hiltpold, I. (2014). The role of root architecture in foraging behavior of entomopathogenic nematodes. Journal of Invertebrate Pathology, 122, 32–39.

    PubMed  Google Scholar 

  • Derzelle, S., Duchaud, E., Kunst, F., Danchin, A., & Bertin, P. (2002). Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Applied Environmental Microbiology, 68, 3780–3789.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dickinson, L., Russell, V. W., & Dunn, P. E. (1988). A family of bacteria–regulated cecropin D–like peptides from Manduca sexta. Journal of Biological Chemistry, 263, 19424–19429.

    CAS  PubMed  Google Scholar 

  • Dowds, B. C. A., & Peters, A. (2002). Virulence mechanisms. In R. Guagler (Ed.), Entomopathhogenic nematology (pp. 79–98). Wallingford, U.K.: CABI Publishing.

    Google Scholar 

  • Duncan, L. W., Graham, J. H., Zellers, J., Bright, D., Dunn, D. C., El-Borai, F. E., et al. (2007). Food web responses to augmenting the entomopathogenic nematodes in bare and animal manure–mulched soil. Journal of Nematology, 39, 176–189.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ekmen, Z. I., Cakmak, I., Karagoz, M., Hazir, S., Ozer, N., & Kaya, H. K. (2010). Food preference of Sancassania polyphyllae (Acari: Acaridae): Living entomopathogenic nematodes or insect tissues? Biocontrol Science and Technology, 20, 553–566.

    Google Scholar 

  • Ekmen, Z. I., Hazir, S., Cakmak, I., Ozer, N., Karagoz, M., & Kaya, H. K. (2010). Potential negative effects on biological control by Sancassania polyphyllae (Acari: Acaridae) on an entomopathogenic nematode species. Biological Control, 54, 166–171.

    Google Scholar 

  • El-Borai, F. E., Brentu, C. F., & Duncan, L. W. (2007). Augmenting entomopathogenic nematodes in soil from a Florida citrus orchard: Non–target effects of a trophic cascade. Journal of Nematology, 39, 203–210.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Epsky, N., & Capinera, J. L. (1988). Efficacy of the entomogenous nematode Steinernema feltiae against a subterranean termite, Reticulitermes tibialis (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 81, 1313–1317.

    Google Scholar 

  • Epsky, N. D., Walter, D. E., & Capinera, J. L. (1988). Potential role of nematophagous microarthropods as biotic mortality factors of entomogenous nematodes (Rhabditida: Steinernematidae and Heterorhabditidae). Journal of Economic Entomology, 81, 821–825.

    Google Scholar 

  • Fenton, A., Magoolagan, L., Kennedy, Z., & Spencer, K. A. (2011). Parasite–induced warning coloration: A novel form of host manipulation. Animal Behavior, 81, 417–422.

    Google Scholar 

  • Fodor, A., Varga, I., Hevesi, M., Máthé-Fodor, A., Racsko, J., & Hogan, J. A. (2012). Anti–microbial peptides of Xenorhabdus origin against multidrug resistant plant pathogens. In V. Bobbarala (Ed.), A search for antibacterial agents (pp. 147–195). Rijeka: InTech Press.

    Google Scholar 

  • Foltan, P., & Půža, V. (2009). To complete their life cycle, pathogenic nematode–bacteria complexes deter scavengers from feeding on their host cadaver. Behavioural Processes, 80, 76–79.

    CAS  PubMed  Google Scholar 

  • Forschler, B. T., & Gardner, W. A. (1991). Parasitism of Phyllophaga hirticula (Coleoptera: Scarabaeidae) by Heterorhabditis heliothidis and Steinernema carpocapsae. Journal of Invertebrate Pathology, 58, 386–407.

    Google Scholar 

  • Forst, S., Dowds, B., Boemare, N., & Stackebrandt, E. (1997). Xenorhabdus and Photorhabdus spp.: Bugs that kill bugs. Annual Review of Microbiology, 51, 47–72.

    CAS  PubMed  Google Scholar 

  • Furgani, G., Böszörményi, E., Fodor, A., Fodor, A. M., Forst, S., Hogan, J., et al. (2008). Xenorhabdus antibiotics: A comparative analysis and potential utility for controlling mastitis caused by bacteria. Journal of Applied Microbiology, 104, 745–758.

    CAS  PubMed  Google Scholar 

  • Fushing, H., Zhu, L., Shapiro-Ilan, D., Campbell, J., & Lewis, E. (2008). State–space based mass event–history model I: Many decision–making agents with one target. The Annals of Applied Statistics, 2(4), 1503–1522.

    PubMed Central  PubMed  Google Scholar 

  • Gaugler, R., Wang, Y., & Campbell, J. F. (1994). Aggressive and evasive behaviors in Popillia japonica (Coleoptera: Scarabaeidae) larvae: Defenses against entomopathogenic nematode attack. Journal of Invertebrate Pathology, 64, 193–199.

    Google Scholar 

  • Georgis, R., & Gaugler, R. (1991). Predictability in biological control using entomopathogenic nematodes. Journal of Economic Entomology, 84, 713–720.

    Google Scholar 

  • Georgis, R., Kaya, H. K., & Gaugler, R. (1991). Effect of Steinernematid and Heterorhabditid nematodes (Rhabditida: Steinternematidae and Heterorhabditidae) on nontarget arthropods. Environmental Entomology, 20(3), 815–822.

    Google Scholar 

  • Gilmore, S. K., & Potter, D. A. (1993). Potential role of collembola as biotic mortality agents for entomopathogenic nematodes. Pedobiologia, 37, 30–38.

    Google Scholar 

  • Glazer, I. (1997). Effects of infected insects on secondary invasion of steinernematid entomopathogenic nematodes. Parasitology, 114, 597–604.

    PubMed  Google Scholar 

  • Grewal, P. S., Lewis, E. E., Gauger, R., & Campbell, J. F. (1993). Host finding behavior as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology, 108(4), 207–215.

    Google Scholar 

  • Gulcu, B., Hazir, S., & Kaya, H. K. (2012). Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes. Journal of Invertebrate Pathology, 110, 326–333.

    CAS  PubMed  Google Scholar 

  • Hawlena, H., Bashey, F., & Lively, C. M. (2012). Bacteriocin–mediated interactions within and between coexisting species. Ecology and Evolution, 2(10), 2516–2521.

    Google Scholar 

  • Hazir, S., Kaya, H. K., Stock, S. P., & Keskin, N. (2003). Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) for biological control of soil pests. Turkish Journal of Biology, 27, 181–202.

    Google Scholar 

  • Hinchliffe, S. J., Hares, M. C., Dowling, A. J., & Ffrench-Constant, R. H. (2010). Insecticidal toxins from the Photorhabdus and Xenorhabdus bacteria. The Open Toxinology Journal, 3, 101–118.

    Google Scholar 

  • Hodson, A. K., Friedman, M. L., Wu, L. N., & Lewis, E. E. (2011). European earwig (Forficula auricularia) as a novel host for the entomopathogenic nematode Steinernema carpocapsae. Journal of Invertebrate Pathology, 107, 60–64.

    CAS  PubMed  Google Scholar 

  • Hodson, A. K., Siegel, J. P., & Lewis, E. E. (2012). Ecological influence of the entomopathogenic nematode, Steinernema carpocapsae, on pistachio orchard soil arthropods. Pedobiologia, 55, 51–58.

    Google Scholar 

  • Hoffmann, J. A. (2003). The immune response of Drosophila. Nature, 426, 33–38.

    CAS  PubMed  Google Scholar 

  • Hu, K., Li, J., & Webster, J. M. (1999). Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathogenic nematodes. Nematology, 1(5), 457–469.

    CAS  Google Scholar 

  • Hu, K. J., Li, J. X., Li, B., Webster, J. M., & Chen, G. H. (2006). A novel antimicrobial epoxide isolated from larval Galleria mellonella infected by the nematode symbiont, Photorhabdus luminescens (Enterobacteriaceae). Bioorganic and Medical Chemistry, 14, 4677–4681.

    CAS  Google Scholar 

  • Ishibashi, N., Young, F. Z., Nakashima, M., Abiru, C., & Haraguchi, N. (1987). Effects of application of DD–136 on silkworm, Bombyx mori predatory insect, Agriosphodorus dohrni, parasitoid, Trichomalus apanteloctenus, soil mites and other non–target soil arthropods with brief notes on feeding behaviour and predatory pressure of soil mites, tardigrates and predatory nematodes on DD–136 nematodes. In N. Ishibashi (Ed.). Recent advances in biological control of insect pests by entomogenous nematodes in Japan (pp. 158–164). Ministry of Education, Japan, Grant No. 59860005, (In Japanese, English abstract).

    Google Scholar 

  • Jarosz, J. (1998). Active resistance of entomophagous rhabditid Heterorhabditis bacteriophora to insect immunity. Parasitology, 117, 201–208.

    PubMed  Google Scholar 

  • Ji, D., Yi, Y., Kang, G. H., Choi, Y. H., Kim, P., Baek, N. I., et al. (2004). Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant–pathogenic bacteria. FEMS Microbiol Letters, 239, 241–248.

    CAS  Google Scholar 

  • Joyce, S. A., Brachmann, A. O., Glazer, I., Lango, L., Schwȁr, G., Clarke, D. J., et al. (2008). Bacterial biosynthesis of a multipotent stilbene. Angewandte Chemie International Edition, 47, 1942–1945.

    CAS  Google Scholar 

  • Kanost, M. R., Jiang, H., & Yu, X.-Q. (2004). Innate immune responses of a lepidopteran insect, Manduca sexta. Immunological Reviews, 198(1), 97–105.

    CAS  PubMed  Google Scholar 

  • Karagoz, M., Gulcu, B., Cakmak, I., Kaya, H. K., & Hazir, S. (2007). Predation of entomopathogenic nematodes by Sancassania sp. (Acari: Acaridae). Experimental and Applied Acarology, 43, 85–95.

    PubMed  Google Scholar 

  • Kaspi, R., Ross, A., Hodson, A., Stevens, G., Kaya, H., & Lewis, E. (2010). Foraging efficacy of the entomopathogenic nematode Steinernema riobrave in different soil types from California citrus groves. Applied Soil Ecology, 45(3), 243–253.

    Google Scholar 

  • Kaya, H. K. (2002). Natural enemies and other antagonists. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 189–202). New York: CABI Publishing.

    Google Scholar 

  • Kaya, H. K., & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology, 38, 181–206.

    Google Scholar 

  • Kim, Y., Ji, D., Cho, S., & Park, Y. (2005). Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. Journal of Invertebrate Pathology, 89, 258–264.

    CAS  PubMed  Google Scholar 

  • Koch, U., & Bathon, H. (1993). Auswirkungen des einsatzes entomopathogener nematoden im freiland auf die nicht–zielfauna. I. Teil: Coleoptera. Anzeiger fur Schadlingskunde. Pflanzenschutz Umweltschutz, 66, 65–68.

    Google Scholar 

  • Koppenhöfer, A. M. (2000). Nematodes. In L. A. Lacey & H. K. Kaya (Eds.), Field manual of techniques in invertebrate pathology (pp. 249–264). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Koppenhöfer, A. M., Grewal, P. S., & Fuzy, E. M. (2007). Differences in penetration routes and establishment rates of four entomopathogenic nematode species into four white grub species. Journal of Invertebrate Pathology, 94, 184–195.

    PubMed  Google Scholar 

  • Koppenhöfer, A. M., Grewal, P. S., & Kaya, H. K. (2000). Synergism of imidacloprid and entomopathogenic nematodes against white grubs: The mechanism. Entomologia Experimentalis et Applicata, 94, 283–293.

    Google Scholar 

  • Koppenhöfer, A. M., & Kaya, H. K. (1995). Density–dependent effects on Steinernema glaseri (Nematoda: Steinernematidae) within an insect host. Journal of Parasitology, 81, 797–799.

    PubMed  Google Scholar 

  • Kruitbos, L. M., Heritage, S., Hapca, S., & Wilson, M. J. (2010). The influence of habitat quality on the foraging strategies of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis. Parasitology, 137, 303–309.

    CAS  PubMed  Google Scholar 

  • Lang, G., Kalvelage, T., Peters, A., Wiese, J., & Imhoff, J. F. (2008). Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. Journal of Natural Products, 71, 1074–1077.

    CAS  PubMed  Google Scholar 

  • Lavine, M. D., & Strand, M. R. (2002). Insect haemocytes and their role in immunity. Insect Biochemistry and Molecular Biology, 32, 1295–1309.

    CAS  PubMed  Google Scholar 

  • Lewis, E. E., Campbell, J., Griffin, C., Kaya, K. H., & Peters, A. (2006). Behavioral ecology of entomopathogenic nematodes. Biological Control, 38, 66–79.

    Google Scholar 

  • Lewis, E. E., & Clarke, D. J. (2012). Nematode parasites and entomopathogens. In E. V. Fernando & H. K. Kaya (Eds.), Insect pathology (2nd ed., pp. 395–424). London, UK: Elsevier Inc.

    Google Scholar 

  • Lewis, E. E., Ricci, M., & Gaugler, R. (1996). Host recognition behaviour predicts host suitability in the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae). Parasitology, 113, 573–579.

    PubMed  Google Scholar 

  • Li, J., Chen, G. H., & Webster, J. M. (1997). Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobacteriaceae). Canadian Journal of Microbiology, 43, 770–773.

    CAS  PubMed  Google Scholar 

  • Li, J., Hu, K., & Webster, J. M. (1998). Antibiotics from Xenorhabdus spp. and Photorhabdus spp. (Enterobacteriaceae). Chemistry of Heterocyclic Compounds, 34, 1331–1339.

    CAS  Google Scholar 

  • Li, J. X., Chen, G. H., Wu, H. M., & Webster, J. M. (1995). Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens. Applied Environmental Microbiology, 61, 4329–4333.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li, X. Y., Cowles, E. A., Cowles, R. S., Gaugler, R., & Cox-Foster, D. L. (2009). Characterization of immunosuppressive surface coat proteins from Steinernema glaseri that selectively kill blood cells in susceptible hosts. Molecular & Biochemical Parasitology, 165, 162–169.

    CAS  Google Scholar 

  • Li, X. Y., Cowles, R. S., Cowles, E. A., Gaugler, R., & Cox-Foster, D. L. (2007). Relationship between the successful infection by entomopathogenic nematodes and the host immune response. International Journal for Parasitology, 37, 365–374.

    CAS  PubMed  Google Scholar 

  • Maizels, R. M., Balic, A., Gomez-Escobar, N., Nair, M., Taylor, M., & Allen, J. E. (2004). Helminth parasites: Masters of regulation. Immunological Reviews, 201, 89–116.

    CAS  PubMed  Google Scholar 

  • Mankowski, M. E., Kaya, H. K., Grace, J. K., & Sipes, B. S. (2005). Differential susceptibility of subterranean termite castes to entomopathogenic nematodes. Biocontrol Science and Technology, 15, 367–377.

    Google Scholar 

  • McInerney, B. V., Gregson, R. P., Lacey, M. J., Akhurst, R. J., Lyons, G. R., Rhodes, S. H., et al. (1991). Biologically active metabolites from Xenorhabdus spp. Part 1: Dithiolopyrrolone derivatives with antibiotic activity. Journal of Natural Products, 54, 774–784.

    CAS  PubMed  Google Scholar 

  • McInerney, B. V., Taylor, W. C., Lacey, M. J., Akhurst, R. J., & Gregson, R. P. (1991). Biologically active metabolites from Xenorhabdus spp. Part 2: Benzopyran–1–one derivatives with gastroprotective activity. Journal of Natural Products, 54, 785–795.

    CAS  PubMed  Google Scholar 

  • McMurtry, J. A. (1984). A consideration of the role of predators in the control of acarine pests. In D. A. Griffiths & C. E. Bowman (Eds.), Acarology VI (Vol. 1, pp. 109–121). New York: Ellis Horwood Ltd.

    Google Scholar 

  • Millar, L. C., & Barbercheck, M. E. (2001). Interaction between endemic and introduced entomopathogenic nematodes in conventional–till and no–till corn. Biological Control, 22, 235–245.

    Google Scholar 

  • Morales-Soto, N., Synder, H., & Forst, S. (2009). Interspecies competition in a bacteria–nematode mutualism. In J. F. White Jr. & M. S. Torres (Eds.), Defensive mutualism in microbial symbiosis (pp. 117–128). Boca Raton, FL: CRC press, Taylor & Francis Group.

    Google Scholar 

  • Nappi, A. J., & Vass, E. (2001). Cytotoxic reactions associated with insect immunity. Advances in Experimental Medicine and Biology, 484, 329–348.

    CAS  PubMed  Google Scholar 

  • Nguyen, K. B., & Duncan, L. W. (2002). Steinernema diaprepesi n. sp. (Rhabditida: Steinernematidae), a parasite of the citrus root weevil Diaprepes abbreviatus (L) (Coleoptera: Curculionidae). Journal of Nematology, 34, 159–170.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen, K. B., & Smart, G. C. (1990). Steinernema scapterisci n. sp. (Rhabditida: Steinernematidae). Journal of Nematology, 22, 187–199.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen, K. B., & Smart, G. C. (1991). Pathogenicity of Steinernema scapterisci to selected invertebrates. Journal of Nematology, 23, 7–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Owuama, C. I. (2001). Entomopathogenic symbiotic bacteria, Xenorhabdus 687 and Photorhabdus of nematodes. World Journal of Microbiology and Biotechnology, 17(688), 505–515.

    CAS  Google Scholar 

  • Park, Y., Kim, Y., Tunaz, H., & Stanley, D. (2004). An entomopathogenic bacterium Xenorhabdus nematophila inhibits hemocytic phospholipase A2 (PLA2) in tobacco hornworms. Journal of Invertebrate Pathology, 86, 65–71.

    CAS  PubMed  Google Scholar 

  • Peters, A., & Ehlers, R.–. U. (1994). Susceptibility of leatherjackets (Tipula paludosa and T. oleracea; Tipulidae: Nematocera) to the entomopathogenic nematode Steinernema feltiae. Journal of Invertebrate Pathology, 63, 163–171.

    Google Scholar 

  • Peters, A., Gouge, D. H., Ehlers, R.-U., & Hague, N. G. M. (1997). Avoidance of encapsulation by Heterorhabditis spp. infecting laravae of Tipula oleracea. Journal of Invertebrate Pathology, 70, 161–164.

    PubMed  Google Scholar 

  • Poinar, G. O., Jr. (1979). Nematodes for biological control of insects. Boca Raton, FL: CRC Press Inc.

    Google Scholar 

  • Poinar, G. O. (1990). Biology and taxonomy of Steinernematidae and Heterorhabditidae. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 23–61). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Politz, S. M., & Philipp, M. (1992). Caenorhabditis elegans as a model for parasitic nematodes—a focus on the cuticle. Parasitology Today, 8, 6–12.

    CAS  PubMed  Google Scholar 

  • Půža, V., & Mráček, Z. (2009). Mixed infection of Galleria mellonella with two entomopathogenic nematodes (Nematoda: Rhabditida) species: Steinernema affine benefits from the presence of Steinernema kraussei. Journal of Invertebrate Pathology, 102, 40–43.

    PubMed  Google Scholar 

  • Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J., & Jaffee, B. A. (2002). Intraguild predation among biological control agents: Theory and evidence. Biological Control, 5, 303–335.

    Google Scholar 

  • Ryder, J. J., & Griffin, C. T. (2002). Density dependent fecundity and infective juvenile production in the entomopathogenic nematode, Heterorhabditis megidis. Parasitology, 125, 83–92.

    CAS  PubMed  Google Scholar 

  • Samish, M., & Glazer, I. (1992). Infectivity of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) to female ticks of Boophilus annulatus (Arachnida: Ixodidae). Journal of Medical Entomology, 29, 614–618.

    CAS  PubMed  Google Scholar 

  • Sharma, S., Waterfield, N., Bowen, D., Thomas, R., Holland, L., James, R., et al. (2002). The lumicins: Novel bacteriocins from Photorhabdus luminescens with similarity to the uropathogenic–specific protein (USP) from uropathogenic Escherichia coli. FEMS Microbiology Letters, 214, 241–249.

    CAS  PubMed  Google Scholar 

  • Sicard, M., Ferdy, J. B., Pages, S., Le Brun, N., Godelle, B., Boemare, N., et al. (2004). When mutualists are pathogens: An experimental study of the symbioses between Steinernema (Entomopathogenic nematodes) and Xenorhabdus (bacteria). Journal of Evolutionary Biology, 17, 985–993.

    CAS  PubMed  Google Scholar 

  • Sicard, M., Hissinger, J., Le Brun, N., Pages, S., Boemare, N., & Moulia, C. (2006). Interspecific competition between entomopathogenic nematodes (Steinernema) is modified by their bacterial symbionts (Xenorhabdus). BMC Evolutionary Biolology, 6, 68.

    Google Scholar 

  • Sicard, M., Tabart, J., Boemare, N. E., Thaler, O., & Moulia, C. (2005). Effect of phenotypic variation in Xenorhabdus nematophila on its mutualistic relationship with the entomopathogenic nematode Steinernema carpocapsae. Parasitology, 131, 687–694.

    CAS  PubMed  Google Scholar 

  • Singh, J. (2012). Structural and functional interferences from a molecular structural model of xenocin toxin from Xenorhabdus nematophila. American Journal of Bioinformatics Research, 2(4), 55–60.

    Google Scholar 

  • Small, R. W. (1987). A review of the prey of predatory soil nematodes. Pedobiologia, 30, 179–206.

    Google Scholar 

  • Smits, H. P. (1996). Post–application persistence of entomopathogenic nematodes. Biocontrol Science and Technology, 6, 379–387.

    Google Scholar 

  • Thaler, J. O., Baghdiguian, S., & Boemare, N. (1995). Purification and characterization of xenorhabdicin, a phage tail–like bacteriocin, from the lysogenic strain F1 of Xenorhabdus nematophila. Applied Environmental Microbiology, 61, 2049–2052.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ulug, D., Hazir, S., Kaya, H. K., & Lewis, E. E. (2014). Natural enemies of natural enemies: The potential top–down impact of predators on entomopathogenic nematode populations. Ecological Entomology, 39(4), 462–469.

    Google Scholar 

  • Wang, Y., Gaugler, R., & Cui, L. (1994). Variations in immune response of Popillia japonica and Acheta domesticus to Heterorhabditis bacteriophora and Steinernema species. Journal of Nematology, 26, 11–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Webster, J. M., Chen, G., Hu, K., & Li, J. (2002). Bacterial metabolites. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 99–114). New York: CABI Publishing.

    Google Scholar 

  • Wilson, M., & Gaugler, R. (2004). Factors limiting short–term persistence of entomopathogenic nematodes. Journal of Applied Entomology, 128(4), 250–253.

    Google Scholar 

  • Wilson, M. J., Ehlers, R. U., & Glazer, I. (2012). Entomopathogenic nematode foraging strategies – is Steinernema carpocapsae an ambush forager? Nematology, 14, 389–394.

    Google Scholar 

  • Yu, H., Gouge, D. H., & Baker, B. (2006). Parasitism of subterranean termites (Isoptera: Rhinotermitidae: Termitidae) by entomopathogenic nematodes (Rhabditida: Steinernematidae; Heterorhabditidae). Journal of Economic Entomology, 99, 1112–1119.

    CAS  PubMed  Google Scholar 

  • Zenner, A. N. R. L., O’Callaghan, K. M., & Griffin, C. T. (2014). Lethal fighting in nematodes is dependent on developmental pathway: Male–male fighting in the entomopathogenic nematode Steinernema longicaudum. PLoS ONE, 9(2), e89385.

    PubMed Central  PubMed  Google Scholar 

  • Zhou, X. S., Kaya, H. K., Heungens, K., & Goodrich-Blair, H. (2002). Response of ants to a deterrent factor(s) produced by the symbiotic bacteria of entomopathogenic nematodes. Applied and Environmental Microbiology, 68, 6202–6209.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin E. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lewis, E.E., Hazir, S., Hodson, A., Gulcu, B. (2015). Trophic Relationships of Entomopathogenic Nematodes in Agricultural Habitats. In: Campos-Herrera, R. (eds) Nematode Pathogenesis of Insects and Other Pests. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-18266-7_5

Download citation

Publish with us

Policies and ethics