Skip to main content

Behaviour and Population Dynamics of Entomopathogenic Nematodes Following Application

  • Chapter
Nematode Pathogenesis of Insects and Other Pests

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis are widely used in inundative biological pest control programmes. It has long been recognised that increased understanding of the ecology of EPN is important for better predictions of field performance and environmental risk (Ehlers & Hokkanen, 1996; Gaugler, Lewis, & Stuart, 1997). Increasingly, EPN are also finding a place as model organisms for fundamental studies in behavioural ecology and evolutionary biology (Campos-Herrera, Barbercheck, Hoy, & Stock, 2012). In this chapter, I consider the fate of EPN used in biocontrol, focussing largely on inundative application to soil. The aim is to provide an overview of the transformation of a biotechnological product to an ecological entity, rather than a review of this rather broad topic. There are already several extensive reviews relevant to the subject, including EPN behaviour and their fate in soil (e.g. Griffin, 2012; Kaya, 2002; Lewis, Campbell, Griffin, Kaya, & Peters, 2006; Stuart, Barbercheck, Grewal, Taylor, & Hoy, 2006; see also Chap. 4). It should be noted that, while the concept of this chapter is to follow the fate of commercially produced EPN when applied to soil, many of the laboratory studies cited have used nematodes produced in insects rather than taken from commercial formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Hatab, M., Gaugler, R., & Ehlers, R. U. (1998). Influence of culture method on Steinernema glaseri lipids. Journal of Parasitology, 84, 215–221.

    CAS  PubMed  Google Scholar 

  • Abu Hatab, M. A., & Gaugler, R. (1999). Lipids of in vivo and in vitro cultured Heterorhabditis bacteriophora. Biological Control, 15, 113–118.

    Google Scholar 

  • Acevedo, J. P. M., Samuels, R. I., Machado, I. R., & Dolinski, C. (2007). Interactions between isolates of the entomopathogenic fungus Metarhizium anisopliae and the entomopathogenic nematode Heterorhabditis bacteriophora JPM4 during infection of the sugar cane borer Diatraea saccharalis (Lepidoptera: Pyralidae). Journal of Invertebrate Pathology, 96, 187–192.

    PubMed  Google Scholar 

  • Adams, B. J., Fodor, A., Koppenhöfer, H. S., Stackebrandt, E., Stock, S. P., & Klein, M. G. (2006). Biodiversity and systematics of nematode–bacterium entomopathogens. Biological Control, 37, 32–49.

    Google Scholar 

  • Alatorre-Rosas, R., & Kaya, H. K. (1990). Interspecific competition between entomopathogenic nematodes in the genera Heterorhabditis and Steinernema for an insect host in sand. Journal of Invertebrate Pathology, 55, 179–188.

    Google Scholar 

  • Alatorre-Rosas, R., & Kaya, H. K. (1991). Interaction between two entomopathogenic nematode species in the same host. Journal of Invertebrate Pathology, 57, 1–6.

    Google Scholar 

  • Ali, J. G., Alborn, H. T., & Stelinski, L. L. (2011). Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. Journal of Ecology, 99, 26–35.

    CAS  Google Scholar 

  • Ali, J. G., Campos-Herrera, R., Alborn, H. T., Duncan, L. W., & Stelinski, L. L. (2013). Sending mixed messages: A trophic cascade produced by a belowground herbivore–induced cue. Journal of Chemical Ecology, 39, 1140–1147.

    CAS  PubMed  Google Scholar 

  • Anbesse, S. A., Adge, B. J., & Gebru, W. M. (2008). Laboratory screening for virulent entomopathogenic nematodes (Heterorhabditis bacteriophora and Steinernema yirgalemense) and fungi (Metarhizium anisophae and Beauveria bassiana) and assessment of possible synergistic effects of combined use against grubs of the barley chafer Coptognathus curtipennis. Nematology, 10, 701–709.

    Google Scholar 

  • Andalo, V., Moino, A., Maximiniano, C., Campos, V. P., & Mendonca, L. A. (2011). Influence of temperature and duration of storage on the lipid reserves of entomopathogenic nematodes. Revista Colombiana De Entomologia, 37, 203–209.

    CAS  Google Scholar 

  • Andersen, E. C., Gerke, J. P., Shapiro, J. A., Crissman, J. R., Ghosh, R., Bloom, J. S., et al. (2012). Chromosome–scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nature Genetics, 44, 285–290.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ansari, M. A., & Butt, T. M. (2011). Effect of potting media on the efficacy and dispersal of entomopathogenic nematodes for the control of black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae). Biological Control, 58, 310–318.

    Google Scholar 

  • Ansari, M. A., Shah, F. A., & Butt, T. M. (2008). Combined use of entomopathogenic nematodes and Metarhizium anisopliae as a new approach for black vine weevil, Otiorhynchus sulcatus, control. Entomologia Experimentalis et Applicata, 129, 340–347.

    Google Scholar 

  • Atwa, A. A., Hegazi, E. M., Khafagi, W. E., & Abd El-Aziz, G. M. (2013). Interaction of the koinobiont parasitoid Microplitis rufiventris of the cotton leafworm, Spodoptera littoralis, with two entomopathogenic rhabditids, Heterorhabditis bacteriophora and Steinernema carpocapsae. Journal of Insect Science, 13, 84.

    PubMed Central  PubMed  Google Scholar 

  • Bal, H. K., Taylor, R. A. J., & Grewal, P. S. (2014). Ambush foraging entomopathogenic nematodes employ ‘sprinting emigrants’ for long distance dispersal in the absence of hosts. Journal of Nematology, 44, 450–451.

    Google Scholar 

  • Barbercheck, M. E., & Kaya, H. K. (1990). Interactions between Beauveria bassiana and the entomogenous nematodes, Steinernema feltiae and Heterorhabditis heliothidis. Journal of Invertebrate Pathology, 55, 225–234.

    Google Scholar 

  • Barbercheck, M. E., & Kaya, H. K. (1991). Competitive interactions between entomopathogenic nematodes and Beauveria bassiana (Deuteromycotina: Hyphomycetes) in soilborne larvae of Spodotera exigua (Lepidoptera: Noctuidae). Environmental Entomology, 20, 707–712.

    Google Scholar 

  • Barbercheck, M. E., Wang, J., & Hirsh, I. S. (1995). Host plant effects on entomopathogenic nematodes. Journal of Invertebrate Pathology, 66, 169–177.

    Google Scholar 

  • Barratt, B. I. P., Blossey, B., & Hokkanen, H. M. T. (2006). Post–release evaluation of non–target effects of biological control agents. In F. Bigler, D. Babendreier, & U. Kuhlmann (Eds.), Environmental impact of invertebrates for biological control of arthropods: Methods and risk assessment (pp. 166–186). Wallingford, UK: CABI.

    Google Scholar 

  • Bashey, F., Hawlena, H., & Lively, C. M. (2012). Alternative paths to success in a parasite community: Within–host competition can favor higher virulence or direct interference. Evolution, 67, 900–907.

    PubMed  Google Scholar 

  • Bashey, F., Reynolds, C., Sarin, T., & Young, S. K. (2011). Virulence and competitive ability in an obligately killing parasite. Oikos, 120, 1539–1545.

    Google Scholar 

  • Battisti, A. (1994). Effects of entomopathogenic nematodes on the spruce web–spinning sawfly Cephalcia arvensis Panzer and its parasitoids in the field. Biocontrol Science and Technology, 4, 95–102.

    Google Scholar 

  • Baujard, P., & Martiny, B. (1994). Transport of nematodes by wind in the peanut cropping area of Senegal, West–Africa. Fundamental and Applied Nematology, 17, 543–550.

    Google Scholar 

  • Baxter, C., Rowan, J. S., McKenzie, B. M., & Neilson, R. (2013). Understanding soil erosion impacts in temperate agroecosystems: Bridging the gap between geomorphology and soil ecology using nematodes as a model organism. Biogeosciences, 10, 7133–7145.

    Google Scholar 

  • Bird, A. F., & Bird, J. (1986). Observations on the use of insect parasitic nematodes as a means of biological control of root–knot nematodes. International Journal for Parasitology, 16, 511–516.

    Google Scholar 

  • Boender, A. J., Roubos, E. W., & van der Velde, G. (2011). Together or alone? Foraging strategies in Caenorhabditis elegans. Biological Reviews, 86, 853–862.

    PubMed  Google Scholar 

  • Boff, M. I. C., van Tol, R., & Smits, P. H. (2002). Behavioural response of Heterorhabditis megidis towards plant roots and insect larvae. Biocontrol, 47, 67–83.

    Google Scholar 

  • Boff, M. I. C., Zoon, F. C., & Smits, P. H. (2001). Orientation of Heterorhabditis megidis to insect hosts and plant roots in a Y–tube sand olfactometer. Entomologia Experimentalis et Applicata, 98, 329–337.

    Google Scholar 

  • Bohan, D. A., & Hominick, W. M. (1996). Investigations on the presence of an infectious proportion amongst populations of Steinernema feltiae (Site 76 strain) infective stages. Parasitology, 112, 113–118.

    Google Scholar 

  • Bohan, D. A., & Hominick, W. M. (1997). Long term dynamics of infectiousness within the infective stage pool of the entomopathogenic nematode Steinernema feltiae (Site 76 strain) Filipjev. Parasitology, 114, 301–308.

    Google Scholar 

  • Bolnick, D. I., Svanback, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D., et al. (2003). The ecology of individuals: Incidence and implications of individual specialization. American Naturalist, 161, 1–28.

    PubMed  Google Scholar 

  • Brown, F. D., D’Anna, I., & Sommer, R. J. (2011). Host–finding behaviour in the nematode Pristionchus pacificus. Proceedings of the Royal Society B–Biological Sciences, 278, 3260–3269.

    PubMed Central  Google Scholar 

  • Brown, I. M., & Gaugler, R. (1996). Cold tolerance of steinernematid and heterorhabitid nematodes. Journal of Thermal Biology, 21, 115–121.

    Google Scholar 

  • Burman, M., & Pye, A. E. (1980). Neoaplectana carpocapsae – movements of nematode populations on a thermal gradient. Experimental Parasitology, 49, 258–265.

    CAS  PubMed  Google Scholar 

  • Burr, A. H. J., & Robinson, A. F. (2004). Locomotion behaviour. In R. Gaugler & A. L. Bilgrami (Eds.), Nematode behaviour (pp. 25–62). Wallingford, UK: CABI.

    Google Scholar 

  • Byers, J. A., & Poinar, G. O. (1982). Location of insect hosts by the nematode Neoaplectana carpocapsae, in response to temperature. Behaviour, 79, 1–10.

    Google Scholar 

  • Campbell, J., & Gaugler, R. (1993). Nictation behaviour and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour, 126, 154–169.

    Google Scholar 

  • Campbell, J. F., & Gaugler, R. (1997). Inter–specific variation in entomopathogenic nematode. Foraging strategy: Dichotomy or variation along a continuum? Fundamental and Applied Nematology, 20, 393–398.

    Google Scholar 

  • Campbell, J. F., & Kaya, H. K. (1999). How and why a parasitic nematode jumps. Nature, 397, 485–486.

    CAS  Google Scholar 

  • Campbell, J. F., & Kaya, H. K. (2002). Variation in entomopathogenic nematode (Steinernematidae and Heterorhabditidae) infective–stage jumping behaviour. Nematology, 4, 471–482.

    Google Scholar 

  • Campbell, J. F., & Lewis, E. E. (2002). Entomopathogenic nematode host–search strategy. In E. E. Lewis, J. F. Campbell, & M. V. K. Sukhdeo (Eds.), The behavioural ecology of parasites (pp. 13–38). Wallingford, UK: CABI.

    Google Scholar 

  • Campbell, J. F., Lewis, E. E., Stock, S. P., Nadler, S., & Kaya, H. K. (2003). Evolution of host search strategies in entomopathogenic nematodes. Journal of Nematology, 35, 142–145.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell, J. F., Orza, G., Yoder, F., Lewis, E., & Gaugler, R. (1998). Spatial and temporal distribution of endemic and released entomopathogenic nematode populations in turfgrass. Entomologia Experimentalis et Applicata, 86, 1–11.

    Google Scholar 

  • Campos-Herrera, R., Barbercheck, M., Hoy, C. W., & Stock, S. P. (2012). Entomopathogenic nematodes as a model system for advancing the frontiers of ecology. Journal of Nematology, 44, 162–176.

    PubMed Central  PubMed  Google Scholar 

  • Campos-Herrera, R., El-Borai, F. E., & Duncan, L. W. (2012). Wide interguild relationships among entomopathogenic and free–living nematodes in soil as measured by real time qPCR. Journal of Invertebrate Pathology, 111, 126–135.

    PubMed  Google Scholar 

  • Campos-Herrera, R., Jaffuel, G., Chiriboga, X., Blanco-Perez, R., Fesselet, M., Půža, V., et al. (2015). Traditional and molecular detection methods reveal intense interguild competition and other multitrophic interactions associated with native entomopathogenic nematodes in Swiss tillage soils. Plant and Soil, 389, 237–255.

    Google Scholar 

  • Campos-Herrera, R., Pathak, E., El-Borai, F. E., Schumann, A., Abd-Elgawad, M. M. M., & Duncan, L. W. (2013). New citriculture system suppresses native and augmented entomopathogenic nematodes. Biological Control, 66, 183–194.

    Google Scholar 

  • Campos-Herrera, R., Trigo, D., & Gutierrez, C. (2006). Phoresy of the entomopathogenic nematode Steinernema feltiae by the earthworm Eisenia fetida. Journal of Invertebrate Pathology, 92, 50–54.

    PubMed  Google Scholar 

  • Carminati, A., Schneider, C. L., Moradi, A. B., Zarebanadkouki, M., Vetterlein, D., Vogel, H. J., et al. (2011). How the rhizosphere may favor water availability to roots. Vadose Zone Journal, 10, 988–998.

    Google Scholar 

  • Carroll, J. J., & Viglierchio, D. R. (1981). On the transport of nematodes by the wind. Journal of Nematology, 13, 476–483.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chabrier, C., & Queneherve, P. (2008). Preventing nematodes from spreading: A case study with Radopholus similis (Cobb) Thorne in a banana field. Crop Protection, 27, 1237–1243.

    Google Scholar 

  • Chiriboga, X., Jaffuel, G., Campos–Herrera, R., Roëder, G., & Turlings, T. C. J. (2014, August 17–22). (E)–b–Caryophyllene diffuses differently regarding soil texture type. 15th International Symposium on Insect–Plant Relationships, University of Neuchâtel, Switzerland.

    Google Scholar 

  • Choe, A., von Reuss, S. H., Kogan, D., Gasser, R. B., Platzer, E. G., Schroeder, F. C., et al. (2012). Ascaroside signaling is widely conserved among nematodes. Current Biology, 22, 772–780.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choo, H. Y., & Kaya, H. K. (1991). Influence of soil texture and presence of roots on host finding by Heterorhabditis bacteriophora. Journal of Invertebrate Pathology, 58, 279–280.

    Google Scholar 

  • Choo, H. Y., Kaya, H. K., Burlando, T. M., & Gaugler, R. (1989). Entomopathogenic nematodes: Host–finding ability in the presence of plant roots. Environmental Entomology, 18, 1136–1140.

    Google Scholar 

  • Christen, J. M., Campbell, J. F., Lewis, E. E., Shapiro-Ilan, D. I., & Ramaswamy, S. B. (2007). Responses of the entomopathogenic nematode, Steinernema riobrave to its insect hosts, Galleria mellonella and Tenebrio molitor. Parasitology, 134, 889–898.

    CAS  PubMed  Google Scholar 

  • Combes, C. (1991). Evolution of parasite life cycles. In C. A. Tofts, A. Aeschlimann, & C. Bolis (Eds.), Parasite host associations: Coexistence or conflict? (pp. 63–82). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Cutler, C. G., & Webster, J. M. (2003). Host–finding ability of three entomopathogenic nematode isolates in the presence of plant roots. Nematology, 5, 601–608.

    Google Scholar 

  • de Altube, M. D. M., Strauch, O., de Castro, G. F., & Pena, A. M. (2008). Control of the flat–headed root borer Capnodis tenebrionis (Linne) (Coleoptera: Buprestidae) with the entomopathogenic nematode Steinernema carpocapsae (Weiser) (Nematoda: Steinernematidae) in a chitosan formulation in apricot orchards. BioControl, 53, 531–539.

    Google Scholar 

  • de la Peña, E., Vandegehuchte, M. L., Bonte, D., & Moens, M. (2011). Nematodes surfing the waves: Long–distance dispersal of soil–borne microfauna via sea swept rhizomes. Oikos, 120, 1649–1656.

    Google Scholar 

  • Demarta, L., Hibbard, B. E., Bohn, M. O., & Hiltpold, I. (2014). The role of root architecture in foraging behavior of entomopathogenic nematodes. Journal of Invertebrate Pathology, 122, 32–39.

    PubMed  Google Scholar 

  • Dembilio, O., Llacer, E., de Altube, M. D. M., & Jacas, J. A. (2010). Field efficacy of imidacloprid and Steinernema carpocapsae in a chitosan formulation against the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Phoenix canariensis. Pest Management Science, 66, 365–370.

    CAS  PubMed  Google Scholar 

  • Dempsey, C. M., & Griffin, C. T. (2002). Phased activity in Heterorhabditis megidis. Parasitology, 124, 605–613.

    CAS  PubMed  Google Scholar 

  • Dillman, A. R., Guillermin, M. L., Lee, J. H., Kim, B., Sternberg, P. W., & Hallem, E. A. (2012). Olfaction shapes host–parasite interactions in parasitic nematodes. Proceedings of the National Academy of Sciences of the United States of America, 109, E2324–E2333.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dillon, A. B., Moore, C. P., Downes, M. J., & Griffin, C. T. (2008). Evict or infect? Managing populations of the large pine weevil, Hylobius abietis, using a bottom–up and top–down approach. Forest Ecology and Management, 255, 2634–2642.

    Google Scholar 

  • Dillon, A. B., Rolston, A. N., Meade, C. V., Downes, M. J., & Griffin, C. T. (2008). Establishment, persistence, and introgression of entomopathogenic nematodes in a forest ecosystem. Ecological Applications, 18, 735–747.

    CAS  PubMed  Google Scholar 

  • Dillon, A. B., Ward, D., Downes, M. J., & Griffin, C. T. (2006). Suppression of the large pine weevil Hylobius abietis (L.) (Coleoptera: Curculionidae) in pine stumps by entomopathogenic nematodes with different foraging strategies. Biological Control, 38, 217–226.

    Google Scholar 

  • Dini-Andreote, F., & van Elsas, J. D. (2013). Back to the basics: The need for ecophysiological insights to enhance our understanding of microbial behaviour in the rhizosphere. Plant and Soil, 373, 1–15.

    CAS  Google Scholar 

  • Downes, M. J., & Griffin, C. T. (1996). Dispersal behaviour and transmission strategies of the entomopathogenic nematodes Heterorhabditis and Steinernema. Biocontrol Science and Technology, 6, 347–356.

    Google Scholar 

  • Dugaw, C. J., & Ram, K. (2011). Individual heterogeneity in mortality mediates long–term persistence of a seasonal microparasite. Oecologia, 166, 317–325.

    PubMed  Google Scholar 

  • Duncan, L., & McCoy, C. (2001). Hydraulic lift increases herbivory by Diaprepes abbreviatus larvae and persistence of Steinernema riobrave in dry soil. Nematology, 33, 142–146.

    CAS  Google Scholar 

  • Duncan, L. W., Dunn, D. C., Bague, G., & Nguyen, K. (2003). Competition between entomopathogenic and free–living bactivorous nematodes in larvae of the weevil Diaprepes abbreviatus. Journal of Nematology, 35, 187–193.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan, L. W., Graham, J. H., Dunn, D. C., Zellers, J., McCoy, C. W., & Nguyen, K. (2003). Incidence of endemic entomopathogenic nematodes following application of Steinerema riobrave for control of Diaprepes abbreviatus. Journal of Nematology, 35, 178–186.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan, L. W., Stuart, R. J., El-Borai, F. E., Campos-Herrera, R., Pathak, E., Giurcanu, M., et al. (2013). Modifying orchard planting sites conserves entomopathogenic nematodes, reduces weevil herbivory and increases citrus tree growth, survival and fruit yield. Biological Control, 64, 26–36.

    Google Scholar 

  • Dusenbery, D. B. (1987). Theoretical range over which bacteria and nematodes locate plant roots using carbon dioxide. Journal of Chemical Ecology, 13, 1617–1624.

    CAS  PubMed  Google Scholar 

  • Dutky, S. R., Thompson, J. V., & Cantwell, G. E. (1964). A technique for the mass propagation of the DD–136 nematode. Journal of Insect Pathology, 6, 417–422.

    Google Scholar 

  • Ebssa, L., & Koppenhöfer, A. M. (2011). Efficacy and persistence of entomopathogenic nematodes for black cutworm control in turfgrass. Biocontrol Science and Technology, 21, 779–796.

    Google Scholar 

  • Ebssa, L., & Koppenhöfer, A. M. (2012). Entomopathogenic nematodes for the management of Agrotis ipsilon: Effect of instar, nematode species and nematode production method. Pest Management Science, 68, 947–957.

    CAS  PubMed  Google Scholar 

  • Ehlers, R. U., & Hokkanen, H. M. T. (1996). Insect biocontrol with non–endemic entomopathogenic nematodes (Steinernema and Heterorhabditis spp): Conclusions and recommendations of a combined OECD and COST Workshop on Scientific and Regulatory Policy Issues. Biocontrol Science and Technology, 6, 295–302.

    Google Scholar 

  • Ehlers, R. U., Oestergaard, J., Hollmer, S., Wingen, M., & Strauch, O. (2005). Genetic selection for heat tolerance and low temperature activity of the entomopathogenic nematode–bacterium complex Heterorhabditis bacteriophora–Photorhabdus luminescens. BioControl, 50, 699–716.

    Google Scholar 

  • El-Borai, F. E., Campos-Herrera, R., Stuart, R. J., & Duncan, L. W. (2011). Substrate modulation, group effects and the behavioral responses of entomopathogenic nematodes to nematophagous fungi. Journal of Invertebrate Pathology, 106, 347–356.

    PubMed  Google Scholar 

  • Elmowitz, D. E., Ebssa, L., & Koppenhöfer, A. M. (2014). Overwintering behavior of the entomopathogenic nematodes Steinernema scarabaei and Heterorhabditis bacteriophora and their white grub hosts. Entomologia Experimentalis et Applicata, 148, 246–258.

    Google Scholar 

  • Eng, M. S., Preisser, E. L., & Strong, D. R. (2005). Phoresy of the entomopathogenic nematode Heterorhabditis marelatus by a non–host organism, the isopod Porcellio scaber. Journal of Invertebrate Pathology, 88, 173–176.

    PubMed  Google Scholar 

  • Ennis, D. E., Dillon, A. B., & Griffin, C. T. (2010). Simulated roots and host feeding enhance infection of subterranean insects by the entomopathogenic nematode Steinernema carpocapsae. Journal of Invertebrate Pathology, 103, 140–143.

    CAS  PubMed  Google Scholar 

  • Everard, A., Griffin, C. T., & Dillon, A. B. (2009). Competition and intraguild predation between the braconid parasitoid Bracon hylobii and the entomopathogenic nematode Heterorhabditis downesi, natural enemies of the large pine weevil, Hylobius abietis. Bulletin of Entomological Research, 99, 151–161.

    CAS  PubMed  Google Scholar 

  • Fallon, D. J. (1998). The use of indigenous entomopathogenic nematodes (Heterorhabditis indica and Steinernema spp.) to control rice stem borer in West Java, Indonesia. Ph.D. Thesis, National University of Ireland, Maynooth.

    Google Scholar 

  • Fenton, A., & Hudson, P. J. (2002). Optimal infection strategies: Should macroparasites hedge their bets? Oikos, 96, 92–101.

    Google Scholar 

  • Ferguson, C. S., Schroeder, P. C., & Shields, E. J. (1995). Vertical distribution, persistence, and activity of entomopathogenic nematodes (Nematoda: Heterorhabditidae and Steinernematidae) in alfalfa snout beetle (Coleoptera: Curculionidae) infested fields. Environmental Entomology, 24, 149–158.

    Google Scholar 

  • Fitters, P. F. L., & Griffin, C. T. (2006). Survival, starvation, and activity in Heterorhabditis megidis (Nematoda: Heterorhabditidae). Biological Control, 37, 82–88.

    Google Scholar 

  • Fitters, P. F. L., Patel, M. N., Griffin, C. T., & Wright, D. J. (1999). Fatty acid composition of Heterorhabditis sp during storage. Comparative Biochemistry and Physiology B–Biochemistry & Molecular Biology, 124, 81–88.

    CAS  Google Scholar 

  • Fuller, S., Schwarz, M., & Tierney, S. (2005). Phylogenetics of the allodapine bee genus Braunsapis: Historical biogeography and long–range dispersal over water. Journal of Biogeography, 32, 2135–2144.

    Google Scholar 

  • Gart, S., Vella, D., & Jung, S. (2011). The collective motion of nematodes in a thin liquid layer. Soft Matter, 7, 2444–2448.

    CAS  Google Scholar 

  • Gaugler, R., & Campbell, J. F. (1991). Selection for enhanced host–finding of scarab larvae (Coleoptera: Scarabaeidae) in an entomopathogenic nematode. Environmental Entomology, 20, 700–706.

    Google Scholar 

  • Gaugler, R., & Georgis, R. (1991). Culture method and efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae). Biological Control, 1, 269–274.

    Google Scholar 

  • Gaugler, R., Lewis, E., & Stuart, R. J. (1997). Ecology in the service of biological control: The case of entomopathogenic nematodes. Oecologia, 109, 483–489.

    Google Scholar 

  • Georgis, R., & Poinar, G. O. (1983). Effect of soil texture on the distribution and infectivity of Neoaplectana carpocapasae (Nematoda: Steinernematidae). Journal of Nematology, 15, 308–311.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giblin-Davis, R. M., Kanzaki, N., & Davies, K. A. (2013). Nematodes that ride insects: Unforeseen consequences of arriving species. Florida Entomologist, 96, 770–780.

    Google Scholar 

  • Girling, R. D., Ennis, D., Dillon, A. B., & Griffin, C. T. (2010). The lethal and sub–lethal consequences of entomopathogenic nematode infestation and exposure for adult pine weevils, Hylobius abietis (Coleoptera: Curculionidae). Journal of Invertebrate Pathology, 104, 195–202.

    CAS  PubMed  Google Scholar 

  • Glazer, I. (1997). Effects of infected insects on secondary invasion of steinernematid entomopathogenic nematodes. Parasitology, 114, 597–604.

    PubMed  Google Scholar 

  • Gouge, D. H., & Hague, N. G. M. (1995). The development of Steinernema feltiae (Nematoda: Steinernematidae) in the sciarid fly Bradysia paupera (Diptera: Sciaridae). Annals of Applied Biology, 126, 395–401.

    Google Scholar 

  • Grewal, P. S. (2002). Formulation and application technology. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 265–287). Wallingford, UK: CAB International.

    Google Scholar 

  • Grewal, P. S., Bornstein-Forst, S., Burnell, A. M., Glazer, I., & Jagdale, G. B. (2006). Physiological, genetic, and molecular mechanisms of chemoreception, thermobiosis, and anhydrobiosis in entomopathogenic nematodes. Biological Control, 38, 54–65.

    CAS  Google Scholar 

  • Grewal, P. S., Converse, V., & Georgis, R. (1999). Influence of production and bioassay methods on infectivity of two ambush foragers (Nematoda: Steinernematidae). Journal of Invertebrate Pathology, 73, 40–44.

    PubMed  Google Scholar 

  • Grewal, P. S., Gaugler, R., & Lewis, E. E. (1993). Host recognition by entomopathogenic nematodes during contact with insect gut contents. Journal of Parasitology, 79, 495–503.

    Google Scholar 

  • Grewal, P. S., Gaugler, R., & Selvan, S. (1993). Host recognition by entomopathogenic nematodes: Behavioral response to contact with host feces. Journal of Chemical Ecology, 19, 1219–1231.

    CAS  PubMed  Google Scholar 

  • Grewal, P. S., Lewis, E. E., Gaugler, R., & Campbell, J. F. (1994). Host finding behaviour as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology, 108, 207–215.

    Google Scholar 

  • Grewal, P. S., & Peters, A. (2005). Formulation and quality. In P. S. Grewal, R.U. Ehlers, & D. Shapiro-Ilan (Eds.), Nematodes as Biocontrol Agents, (pp. 79–90). Wallingford, UK: CAB International.

    Google Scholar 

  • Griffin, C. T. (1996). Effects of prior storage conditions on the infectivity of Heterorhabditis sp. (Nematoda: Heterorhabditidae). Fundamental and Applied Nematology, 19, 95–102.

    Google Scholar 

  • Griffin, C. T. (2012). Perspectives on the behavior of entomopathogenic nematodes from dispersal to reproduction: traits contributing to nematode fitness and biocontrol efficacy. Journal of Nematology, 44, 177–184.

    PubMed Central  PubMed  Google Scholar 

  • Griffin, C. T., Finnegan, M. M., & Downes, M. J. (1994). Environmental tolerances and the dispersal of Heterorhabditis: Survival and infectivity of european Heterorhabditis following prolonged immersion in seawater. Fundamental and Applied Nematology, 17, 415–421.

    Google Scholar 

  • Griffin, C. T., O’Callaghan, K., & Dix, I. (2001). A self–fertile species of Steinernema from Indonesia: Further evidence of convergent evolution amongst entomopathogenic nematodes? Parasitology, 122, 181–186.

    CAS  PubMed  Google Scholar 

  • Haas, W. (2003). Parasitic worms: Strategies of host finding, recognition and invasion. Zoology, 106, 349–364.

    PubMed  Google Scholar 

  • Hallem, E. A., Dillman, A. R., Hong, A. V., Zhang, Y. J., Yano, J. M., DeMarco, S. F., et al. (2011). A sensory code for host seeking in parasitic nematodes. Current Biology, 21, 377–383.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamilton, W. D. (1971). Geometry for the selfish herd. Journal of Theoretical Biology, 31, 295–311.

    CAS  PubMed  Google Scholar 

  • Han, R. C., & Ehlers, R. U. (2000). Pathogenicity, development, and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. Journal of Invertebrate Pathology, 75, 55–58.

    CAS  PubMed  Google Scholar 

  • Hara, A. H., & Kaya, H. K. (1983). Development of the entomogenous nematode, Neoaplectana carpocapsae (Rhabditida: Steinernematidae), in insecticide killed beet armyworm (Lepidoptera: Noctuidae). Journal of Economic Entomology, 76, 423–426.

    CAS  Google Scholar 

  • Harvey, C. D., Alameen, K. M., & Griffin, C. T. (2012). The impact of entomopathogenic nematodes on a non–target, service–providing longhorn beetle is limited by targeted application when controlling forestry pest Hylobius abietis. Biological Control, 62, 173–182.

    Google Scholar 

  • Harvey, C. D., & Griffin, C. T. (2012). Host activity and wasp experience affect parasitoid wasp foraging behaviour and oviposition on nematode–infected larvae of the forestry pest Hylobius abietis. Ecological Entomology, 37, 269–282.

    Google Scholar 

  • Hass, B., Downes, M. J., & Griffin, C. T. (2002). Persistence of four Heterorhabditis spp. isolates in soil: Role of lipid reserves. Journal of Nematology, 34, 151–158.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hass, B., Griffin, C. T., & Downes, M. J. (1999). Persistence of Heterorhabditis infective juveniles in soil: Comparison of extraction and infectivity measurements. Journal of Nematology, 31, 508–516.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hawkins, B. A., Cornell, H. V., & Hochberg, M. E. (1997). Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology, 78, 2145–2152.

    Google Scholar 

  • Hawlena, H., Bashey, F., Mendes-Soares, H., & Lively, C. M. (2010). Spiteful interactions in a natural population of the bacterium Xenorhabdus bovienii. American Naturalist, 175, 374–381.

    PubMed  Google Scholar 

  • Head, J., Palmer, L. F., & Walters, K. E. (2003). The compatibility of control agents used for the control of the South American leafminer, Liriomyza huidobrensis. Biocontrol Science and Technology, 13, 77–86.

    Google Scholar 

  • Hiltpold, I., Baroni, M., Toepfer, S., Kuhlmann, U., & Turlings, T. C. J. (2010). Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. Journal of Experimental Biology, 213, 2417–2423.

    CAS  PubMed  Google Scholar 

  • Hiltpold, I., & Turlings, T. C. J. (2008). Belowground chemical signaling in maize: When simplicity rhymes with efficiency. Journal of Chemical Ecology, 34, 628–635.

    CAS  PubMed  Google Scholar 

  • Hinsinger, P., Bengough, A. G., Vetterlein, D., & Young, I. M. (2009). Rhizosphere: Biophysics, biogeochemistry and ecological relevance. Plant and Soil, 321, 117–152.

    CAS  Google Scholar 

  • Hodson, A. K., Siegel, J. P., & Lewis, E. E. (2012). Ecological influence of the entomopathogenic nematode, Steinernema carpocapsae, on pistachio orchard soil arthropods. Pedobiologia, 55, 51–58.

    Google Scholar 

  • Hui, E., & Webster, J. M. (2000). Influence of insect larvae and seedling roots on the host–finding ability of Steinernema feltiae (Nematoda: Steinernematidae). Journal of Invertebrate Pathology, 75, 152–162.

    CAS  PubMed  Google Scholar 

  • Hunt, H. W., Wall, D. H., DeCrappeo, N. M., & Brenner, J. S. (2001). A model for nematode locomotion in soil. Nematology, 3, 705–716.

    Google Scholar 

  • Jabbour, R., & Barbercheck, M. E. (2008). Soil and habitat complexity effects on movement of the entomopathogenic nematode Steinernema carpocapsae in maize. Biological Control, 47, 235–243.

    Google Scholar 

  • Jansson, R. K., Lecrone, S. H., & Gaugler, R. (1993). Field efficacy and persistance of entomopathogenic nematodes (Rhabditida, Steinernematidae, Heterorhabditidae) for control of sweet–potato weevil (Coleoptera, Apionidae) in southern Florida. Journal of Economic Entomology, 86, 1055–1063.

    Google Scholar 

  • Kanagy, J. M. N., & Kaya, H. K. (1996). The possible role of marigold roots and alpha terthienyl in mediating host–finding by steinernematid nematodes. Nematologica, 42, 220–231.

    Google Scholar 

  • Kaplan, F., Alborn, H. T., von Reuss, S. H., Ajredini, R., Ali, J. G., Akyazi, F., et al. (2012). Interspecific nematode signals regulate dispersal behavior. Plos One, 7, e38735.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaya, H. K. (1978). Interaction between Neoaplectana carpocapsae (Nematoda: Steinernematidae) and Apanteles militaris (Hymenoptera: Bracondiae), a parasitoid of the armyworm, Pseudaletia unipuncta. Journal of Invertebrate Pathology, 31, 358–364.

    Google Scholar 

  • Kaya, H. K. (2002). Natural enemies and other antagonists. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 189–203). Wallingford, UK: CAB International.

    Google Scholar 

  • Kaya, H. K., & Burlando, T. M. (1989). Development of Steinernema feltiae (Rhabditidae: Steinernematidae) in diseased insect hosts. Journal of Invertebrate Pathology, 53, 164–168.

    Google Scholar 

  • Kaya, H. K., Gaugler, R., & Kung, S. P. (1990). Soil type and entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 55, 401–406.

    Google Scholar 

  • Kaya, H. K., & Hotchkin, P. G. (1981). The nematode Neoaplectana carpocapsae Weiser and its effect on selected ichneumonid and braconid parasites. Environmental Entomology, 10, 474–478.

    Google Scholar 

  • Kim, H. G., & Alston, D. G. (2008). Potential of two entomopathogenic nematodes for suppression of plum curculio (Conotrachelus nenuphar, Coleoptera: Curculionidae) life stages in northern climates. Environmental Entomology, 37, 1272–1279.

    CAS  PubMed  Google Scholar 

  • Kondo, E. (1989). Studies on the infectivity and propogation of entomogenous nematodes, Steinernema spp. (Rhabditida: Steinernematidae), in the common cutworm Spodoptera litura (Lepidoptera: Noctuidae). Bulletin of the Faculty of Agriculture, Saga University, 67, 1–88.

    Google Scholar 

  • Koppenhöfer, A., Baur, M., Stock, P., Choo, H., Chinnasri, B., & Kaya, H. (1997). Survival of entomopathogenic nematodes within host cadavers in dry soil. Applied Soil Ecology, 6, 231–240.

    Google Scholar 

  • Koppenhöfer, A. M., Campbell, J. F., Kaya, H. K., & Gaugler, R. (1998). Estimation of entomopathogenic nematodes population density in soil by correlation between bait inset mortality and nematode penetration. Fundamental and Applied Nematology, 21, 95–102.

    Google Scholar 

  • Koppenhöfer, A. M., Cowles, R. S., Cowles, E. A., Fuzy, E. M., & Kaya, H. K. (2003). Effect of neonicotinoid synergists on entomopathogenic nematode fitness. Entomologia Experimentalis et Applicata, 106, 7–18.

    Google Scholar 

  • Koppenhöfer, A. M., & Fuzy, E. M. (2006). Effect of soil type on infectivity and persistence of the entomopathogenic nematodes Steinernema scarabaei, Steinernema glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora. Journal of Invertebrate Pathology, 92, 11–22.

    PubMed  Google Scholar 

  • Koppenhöfer, A. M., & Fuzy, E. M. (2009). Long–term effects and persistence of Steinernema scarabaei applied for suppression of Anomala orientalis (Coleoptera: Scarabaeidae). Biological Control, 48, 63–72.

    Google Scholar 

  • Koppenhöfer, A. M., & Kaya, H. K. (1995). Density–dependent effects on Steinernema glaseri (Nematoda: Steinernematidae) within an insect host. Journal of Parasitology, 81, 797–799.

    PubMed  Google Scholar 

  • Koppenhöfer, A. M., Kaya, H. K., Shanmugam, S., & Wood, G. L. (1995). Interspecific competition between steinernematid nematodes within an insect host. Journal of Invertebrate Pathology, 66, 99–103.

    Google Scholar 

  • Kruitbos, L. M., Heritage, S., Hapca, S., & Wilson, M. J. (2010). The influence of habitat quality on the foraging strategies of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis. Parasitology, 137, 303–309.

    CAS  PubMed  Google Scholar 

  • Kruitbos, L. M., Heritage, S., & Wilson, M. J. (2009). Phoretic dispersal of entomopathogenic nematodes by Hylobius abietis. Nematology, 11, 419–427.

    Google Scholar 

  • Kung, S. P., & Gaugler, R. (1991). Effects of soil temperature, moisture, and relative humidity on entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 57, 242–249.

    Google Scholar 

  • Lacey, L. A., Kaya, H. K., & Bettencourt, R. (1995). Dispersal of Steinernema glaseri (Nematoda: Steinernematidae) in adult Japanese beetles, Popillia japonica (Coleoptera: Scarabaeidae). Biocontrol Science and Technology, 5, 121–130.

    Google Scholar 

  • Lacey, L. A., Unruh, T. R., & Headrick, H. L. (2003). Interactions of two idiobiont parasitoids (Hymenoptera: Ichneumonidae) of codling moth (Lepidoptera: Tortricidae) with the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae). Journal of Invertebrate Pathology, 83, 230–239.

    PubMed  Google Scholar 

  • Lee, C. E. (2002). Evolutionary genetics of invasive species. Trends in Ecology & Evolution, 17, 386–391.

    Google Scholar 

  • Lee, H., Choi, M. K., Lee, D., Kim, H. S., Hwang, H., Kim, H., et al. (2012). Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nature Neuroscience, 15, 107–112.

    CAS  Google Scholar 

  • Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G., & Moreno, C. R. (2009). Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 40, 573–592.

    Google Scholar 

  • Lewis, E. E., Campbell, J., Griffin, C., Kaya, H., & Peters, A. (2006). Behavioral ecology of entomopathogenic nematodes. Biological Control, 38, 66–79.

    Google Scholar 

  • Lewis, E. E., & Gaugler, R. (1994). Entomopathogenic nematode (Rhabdita: Steinernemat idae) sex ratio relates to foraging strategy. Journal of Invertebrate Pathology, 64, 238–242.

    Google Scholar 

  • Lewis, E. E., Gaugler, R., & Harrison, R. (1993). Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Canadian Journal of Zoology–Revue Canadienne De Zoologie, 71, 765–769.

    Google Scholar 

  • Lewis, E. E., Grewal, P. S., & Gaugler, R. (1995). Hierarchical order of host cues in parasite foraging strategies. Parasitology, 119, 207–213.

    Google Scholar 

  • Lewis, E. E., Ricci, M., & Gaugler, R. (1996). Host recognition behaviour predicts host suitability in the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae). Parasitology, 113, 573–579.

    PubMed  Google Scholar 

  • Lewis, E. E., & Shapiro-Ilan, D. I. (2002). Host cadavers protect entomopathogenic nematodes during freezing. Journal of Invertebrate Pathology, 81, 25–32.

    PubMed  Google Scholar 

  • Lindegren, J. E., Valero, K. A., & Mackey, B. E. (1993). Simple in vivo production and storage methods for Steinernema carpocapsae infective juveniles. Journal of Nematology, 25, 193–197.

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacInnis, A. J. (1976). How parasites find hosts: Some thoughts on the inception of host–parasite integration. In C. R. Kennedy (Ed.), Ecological aspects of parasitology (pp. 3–20). Amsterdam: North–Holland.

    Google Scholar 

  • Mankin, R. W., Brandhorst-Hubbard, J., Flanders, K. L., Zhang, M., Crocker, R. L., Lapointe, S. L., et al. (2000). Eavesdropping on insects hidden in soil and interior structures of plants. Journal of Economic Entomology, 93, 1173–1182.

    CAS  PubMed  Google Scholar 

  • Mbata, G. N., & Shapiro-Ilan, D. I. (2010). Compatibility of Heterorhabditis indica (Rhabditida: Heterorhabditidae) and Habrobracon hebetor (Hymenoptera: Braconidae) for biological control of Plodia interpunctella (Lepidoptera: Pyralidae). Biological Control, 54, 75–82.

    Google Scholar 

  • McGraw, B. A., Vittum, P. J., Cowles, R. S., & Koppenhöfer, A. M. (2010). Field evaluation of entomopathogenic nematodes for the biological control of the annual bluegrass weevil, Listronotus maculicollis (Coleoptera: Curculionidae), in golf course turfgrass. Biocontrol Science and Technology, 20, 149–163.

    Google Scholar 

  • McNamara, J. M., & Houston, A. I. (1991). Starvation and predation in a patchy environment. In B. Shorrocks & I. R. Swingland (Eds.), Living in a patchy environment (pp. 23–43). Oxford: Oxford University Press.

    Google Scholar 

  • McNeill, M., Phillips, C., Young, S., Shah, F., Aalders, L., Bell, N., et al. (2011). Transportation of nonindigenous species via soil on international aircraft passengers’ footwear. Biological Invasions, 13, 2799–2815.

    Google Scholar 

  • Mertz, N. R., Agudelo, E. J. G., Sales, F. S., Rohde, C., & Moino, A. (2014). Phoretic dispersal of the entomopathogenic nematode Heterorhabditis amazonensis by the beetle Calosoma granulatum. Phytoparasitica, 42, 179–187.

    Google Scholar 

  • Millar, L. C., & Barbercheck, M. E. (2001). Interaction between endemic and introduced entomopathogenic nematodes in conventional–till and no–till corn. Biological Control, 22, 235–245.

    Google Scholar 

  • Molyneux, A. S. (1985). Survival of infective juveniles of Heterorhabditis spp., and Steinernema spp. (Nematoda: Rhabditida) at various temperatures and their subsequent infectivity for insects. Revue de Nematologie, 8, 165–170.

    Google Scholar 

  • Morgan, K., McGaughran, A., Ganeshan, S., Herrmann, M., & Sommer, R. J. (2014). Landscape and oceanic barriers shape dispersal and population structure in the island nematode Pristionchus pacificus. Biological Journal of the Linnean Society, 112, 1–15.

    Google Scholar 

  • Mráček, Z., & Spitzer, K. (1983). Interaction of the predators and parasitoids of the sawfly, Cephalcia abietis (Pamphilidae: Hymenoptera) with its nematode Steinernema kraussei. Journal of Invertebrate Pathology, 42, 397–399.

    Google Scholar 

  • Nathan, R., Katul, G. G., Horn, H. S., Thomas, S. M., Oren, R., Avissar, R., et al. (2002). Mechanisms of long–distance dispersal of seeds by wind. Nature, 418, 409–413.

    CAS  PubMed  Google Scholar 

  • Nguyen, K. B., & Smart, G. C. J. (1995). Morphometrics of infective juveniles of Steinernema spp. and Heterorhabditis bacteriophora (Nemata: Rhabditida). Journal of Nematology, 27, 206–212.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen, A. L., & Lewis, E. E. (2011). Designing the ideal habitat for entomopathogen use in nursery production. Pest Management Science, 68, 1053–1061.

    Google Scholar 

  • Nielsen, O., & Philipsen, H. (2004a). Recycling of entomopathogenic nematodes in Delia radicum and in other insects from cruciferous crops. BioControl, 49, 285–294.

    Google Scholar 

  • Nielsen, O., & Philipsen, H. (2004b). Seasonal population dynamics of inoculated and indigenous steinernematid nematodes in an organic cropping system. Nematology, 6, 901–909.

    Google Scholar 

  • Nkem, J. N., Wall, D. H., Virginia, R. A., Barrett, J. E., Broos, E. J., Porazinska, D. L., et al. (2006). Wind dispersal of soil invertebrates in the McMurdo Dry valleys, Antarctica. Polar Biology, 29, 346–352.

    Google Scholar 

  • O’Callaghan, K. M., Zenner, A. N. R. L., Hartley, C. J., & Griffin, C. T. (2014). Interference competition in entomopathogenic nematodes: Male Steinernema kill members of their own and other species. International Journal for Parasitology, 44, 1009–1017.

    PubMed  Google Scholar 

  • O’Leary, S., Power, P., Stack, C., & Burnell, A. (2001). Behavioural and physiological responses of infective juveniles of the entomopathogenic nematode Heterorhabditis to desiccation. BioControl, 46, 345–362.

    Google Scholar 

  • Parkman, J. P., & Smart, G. C. (1996). Entomopathogenic nematodes, a case study: Introduction of Steinernema scapterisci in Florida. Biocontrol Science and Technology, 6, 413–419.

    Google Scholar 

  • Patel, M. N., Stolinski, M., & Wright, D. J. (1997). Neutral lipids and the assessment of infectivity in entomopathogenic nematodes: Observations on four Steinernema species. Parasitology, 114, 489–496.

    CAS  PubMed  Google Scholar 

  • Patel, M. N., & Wright, D. J. (1997). Glycogen: Its importance in the infectivity of aged juveniles of Steinernema carpocapsae. Parasitology, 114, 591–596.

    CAS  PubMed  Google Scholar 

  • Peters, A. (1996). The natural host range of Steinernema and Heterorhabditis spp. and their impact on insect populations. Biocontrol Science and Technology, 6, 389–402.

    Google Scholar 

  • Peters, A., & Ehlers, R. U. (1994). Susceptibility of leatherjackets (Tipula paludosa and Tipula oleracea; Tipulidae: Nematocera) to the entomopathogenic nematode Steinernema feltiae. Journal of Invertebrate Pathology, 63, 163–171.

    Google Scholar 

  • Pilz, C., Toepfer, S., Knuth, P., Strimitzer, T., Heimbach, U., & Grabenweger, G. (2014). Persistence of the entomoparasitic nematode Heterorhabditis bacteriophora in maize fields. Journal of Applied Entomology, 138, 202–212.

    Google Scholar 

  • Poinar, G. O., & Hom, A. (1986). Survival and horizontal movement of infective stage Neoaplectana carpocapsae in the field. Journal of Nematology, 18, 34–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Portillo-Aguilar, C., Villani, M. G., Tauber, M. J., Tauber, C. A., & Nyrop, J. P. (1999). Entomopathogenic nematode (Rhabditida: Heterorhabditidae and Steinernematidae) response to soil texture and bulk density. Environmental Entomology, 28, 1021–1035.

    Google Scholar 

  • Preisser, E. L., Dugaw, C. J., Dennis, B., & Strong, D. R. (2005). Long–term survival of the entomopathogenic nematode Heterorhabditis marelatus. Environmental Entomology, 34, 1501–1506.

    Google Scholar 

  • Preisser, E. L., Dugaw, C. J., Dennis, B., & Strong, D. R. (2006). Plant facilitation of a belowground predator. Ecology, 87, 1116–1123.

    PubMed  Google Scholar 

  • Prentis, P. J., Wilson, J. R. U., Dormontt, E. E., Richardson, D. M., & Lowe, A. J. (2008). Adaptive evolution in invasive species. Trends in Plant Science, 13, 288–294.

    CAS  PubMed  Google Scholar 

  • Půža, V., & Mráček, Z. (2007). Natural population dynamics of entomopathogenic nematode Steinernema affine (Steinernematidae) under dry conditions: Possible nematode persistence within host cadavers? Journal of Invertebrate Pathology, 96, 89–92.

    PubMed  Google Scholar 

  • Půža, V., & Mráček, Z. (2009). Mixed infection of Galleria mellonella with two entomopathogenic nematode (Nematoda: Rhabditida) species: Steinernema affine benefits from the presence of Steinernema kraussei. Journal of Invertebrate Pathology, 102, 40–43.

    PubMed  Google Scholar 

  • Půža, V., & Mráček, Z. (2010a). Does scavenging extend the host range of entomopathogenic nematodes (Nematoda: Steinernematidae)? Journal of Invertebrate Pathology, 104, 1–3.

    PubMed  Google Scholar 

  • Půža, V., & Mráček, Z. (2010b). Mechanisms of coexistence of two sympatric entomopathogenic nematodes, Steinernema affine and S. kraussei (Nematoda: Steinernematidae), in a central European oak woodland soil. Applied Soil Ecology, 45, 65–70.

    Google Scholar 

  • Pye, K. (1983). Coastal dunes. Progress in Physical Geography, 7, 531–557.

    Google Scholar 

  • Ram, K., Gruner, D. S., McLaughlin, J. P., Preisser, E. L., & Strong, D. R. (2008). Dynamics of a subterranean trophic cascade in space and time. Journal of Nematology, 40, 85–92.

    PubMed Central  PubMed  Google Scholar 

  • Ram, K., Preisser, E. L., Gruner, D. S., & Strong, D. R. (2008). Metapopulation dynamics override local limits on long–term parasite persistence. Ecology, 89, 3290–3297.

    PubMed  Google Scholar 

  • Ramos-Rodriguez, O., Campbell, J. F., Christen, J. M., Shapiro-Ilan, D. I., Lewis, E. E., & Ramaswamy, S. B. (2007). Attraction behaviour of three entomopathogenic nematode species towards infected and uninfected hosts. Parasitology, 134, 729–738.

    CAS  PubMed  Google Scholar 

  • Randall, J., Cable, J., Guschina, I. A., Harwood, J. L., & Lello, J. (2013). Endemic infection reduces transmission potential of an epidemic parasite during co–infection. Proceedings of the Royal Society B–Biological Sciences, 280, 20131500.

    Google Scholar 

  • Rasmann, S., Kollner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., et al. (2005). Recruitment of entomopathogenic nematodes by insect–damaged maize roots. Nature, 434, 732–737.

    CAS  PubMed  Google Scholar 

  • Rasmann, S., & Turlings, T. C. J. (2008). First insights into specificity of belowground tritrophic interactions. Oikos, 117, 362–369.

    Google Scholar 

  • Rogers, C., Persson, A., Cheung, B., & de Bono, M. (2006). Behavioral motifs and neural pathways coordinating O2 responses and aggregation in C. elegans. Current Biology, 16, 649–659.

    CAS  PubMed  Google Scholar 

  • Rolston, A., Meade, C., Boyle, S., Kakouli-Duarte, T., & Downes, M. (2009). Intraspecific variation among isolates of the entomopathogenic nematode Steinernema feltiae from Bull Island, Ireland. Nematology, 11, 439–451.

    Google Scholar 

  • Rolston, A. N., Griffin, C. T., & Downes, M. J. (2006). Emergence and dispersal patterns of two isolates of the entomopathogenic nematode Steinernema feltiae. Journal of Nematology, 38, 221–228.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ronce, O. (2007). How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annual Review of Ecology, Evolution, and Systematics, 38, 231–253.

    Google Scholar 

  • Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J., & Jaffee, B. A. (1995). Intraguild predation among biological–control agents: Theory and evidence. Biological Control, 5, 303–335.

    Google Scholar 

  • Ryder, J. J., & Griffin, C. T. (2002). Density dependent fecundity and infective juvenile production in the entomopathogenic nematode, Heterorhabditis megidis. Parasitology, 125, 83–92.

    CAS  PubMed  Google Scholar 

  • Ryder, J. J., & Griffin, C. T. (2003). Phased infectivity in Heterorhabditis megidis: The effects of infection density in the parental host and filial generation. International Journal for Parasitology, 33, 1013–1018.

    CAS  PubMed  Google Scholar 

  • San-Blas, E., & Gowen, S. R. (2008). Facultative scavenging as a survival strategy of entomopathogenic nematodes. International Journal for Parasitology, 38, 85–91.

    PubMed  Google Scholar 

  • San-Blas, E., Gowen, S. R., & Pembroke, B. (2008). Steinernema feltiae: Ammonia triggers the emergence of their infective juveniles. Experimental Parasitology, 119, 180–185.

    CAS  PubMed  Google Scholar 

  • Sax, D. F., Stachowicz, J. J., Brown, J. H., Bruno, J. F., Dawson, M. N., Gaines, S. D., et al. (2007). Ecological and evolutionary insights from species invasions. Trends in Ecology & Evolution, 22, 465–471.

    Google Scholar 

  • Scheepmaker, J. W. A., Geels, F. P., Griensven, L. J. L., Van, D., & Smits, P. H. (1998). Susceptibility of larvae of the mushroom fly Megaselia halterata to the entomopathogenic nematode Steinernema feltiae in bioassays. BioControl, 43, 201–214.

    Google Scholar 

  • Schroer, S., Yi, X. L., & Ehlers, R. U. (2005). Evaluation of adjuvants for foliar application of Steinernema carpocapsae against larvae of the diamondback moth (Plutella xylostella). Nematology, 7, 37–44.

    CAS  Google Scholar 

  • Selvan, S., Campbell, J. F., & Gaugler, R. (1993). Density–dependent effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. Journal of Invertebrate Pathology, 62, 278–284.

    Google Scholar 

  • Serwe-Rodriguez, J., Sonnenberg, K., Appleman, B., & Bornstein-Forst, S. (2004). Effects of host desiccation on development, survival, and infectivity of entomopathogenic nematode Steinernema carpocapsae. Journal of Invertebrate Pathology, 85, 175–181.

    PubMed  Google Scholar 

  • Shannag, H. K., & Capinera, J. L. (2000). Interference of Steinernema carpocapsae (Nematoda: Steinernematidae) with Cardiochiles diaphaniae (Hymenoptera: Braconidae), a parasitoid of melonworm and pickleworm (Lepidoptera: Pyralidae). Environmental Entomology, 29, 612–617.

    Google Scholar 

  • Shapiro, D. I., & Glazer, I. (1996). Comparison of entomopathogenic nematode dispersal from infected hosts versus aqueous suspension. Environmental Entomology, 25, 1455–1461.

    Google Scholar 

  • Shapiro, D. I., Glazer, I., & Segal, D. (1996). Trait stability and fitness of the heat tolerant entomopathogenic nematode Heterorhabditis bacteriophora IS5 strain. Biological Control, 6, 238–244.

    Google Scholar 

  • Shapiro, D. I., Glazer, I., & Segal, D. (1997). Genetic diversity in wild and laboratory populations of Heterorhabditis bacteriophora as determined by RAPD–PCR analysis. Fundamental and Applied Nematology, 20, 581–585.

    Google Scholar 

  • Shapiro, D. I., & Lewis, E. E. (1999). Comparison of entomopathogenic nematode infectivity from infected hosts versus aqueous suspension. Environmental Entomology, 28, 907–911.

    Google Scholar 

  • Shapiro, D. I., Tylka, G. L., Berry, E. C., & Lewis, L. C. (1995). Effects of earthworms on the dispersal of Steinernema spp. Parasitology, 21, 21–28.

    Google Scholar 

  • Shapiro, M., Poinar, G. O., & Lindegren, J. E. (1985). Suitability of Lymantria dispar (Lepidoptera: Lymantriidae) as a host for the entomogeneous nematode, Steinernema feltiae (Rhabditida: Steinernematidae). Journal of Economic Entomology, 78, 342–345.

    Google Scholar 

  • Shapiro-Ilan, D. I., Brown, I., & Lewis, E. E. (2014). Freezing and desiccation tolerance in entomopathogenic nematodes: Diversity and correlation of traits. Journal of Nematology, 46, 27–34.

    PubMed Central  PubMed  Google Scholar 

  • Shapiro-Ilan, D. I., Dutcher, J. D., & Hatab, M. (2005). Recycling potential and fitness of steinernematid nematodes cultured in Curculio caryae and Galleria mellonella. Journal of Nematology, 37, 12–17.

    PubMed Central  PubMed  Google Scholar 

  • Shapiro-Ilan, D. I., Gaugler, R., Tedders, W. L., Brown, I., & Lewis, E. E. (2002). Optimization of inoculation for in vivo production of entomopathogenic nematodes. Journal of Nematology, 34, 343–350.

    PubMed Central  PubMed  Google Scholar 

  • Shapiro-Ilan, D. I., Han, R., & Dolinski, C. (2012). Entomopathogenic nematode production and application technology. Journal of Nematology, 44, 226–235.

    Google Scholar 

  • Shapiro-Ilan, D. I., Jackson, M., Reilly, C. C., & Hotchkiss, M. W. (2004). Effects of combining an entomopathogenic fungi or bacterium with entomopathogenic nematodes on mortality of Curculio caryae (Coleoptera: Curculionidae). Biological Control, 30, 119–126.

    Google Scholar 

  • Shapiro-Ilan, D. I., Lewis, E. E., & Schliekelman, P. (2014). Aggregative group behavior in insect parasitic nematode dispersal. International Journal for Parasitology, 44, 49–54.

    PubMed  Google Scholar 

  • Sher, R. B., Parrella, M. P., & Kaya, H. K. (2000). Biological control of the Leafminer Liriomyza trifolii (Burgess): Implications for intraguild predation between Diglyphus begini Ashmead and Steinernema carpocapsae (Weiser). Biological Control, 17, 155–163.

    Google Scholar 

  • Shields, E. J., Testa, A., Miller, J. M., & Flanders, K. L. (1999). Field efficacy and persistence of the entomopathogenic nematodes Heterorhabditis bacteroiophora ‘Oswego’ and H. bacteriophora “NC” on alfalfa snout beetle larvae (Coleoptera: Curculionidae). Environmental Entomology, 28, 128–136.

    Google Scholar 

  • Sicard, M., Ferdy, J. B., Pages, S., Le Brun, N., Godelle, B., Boemare, N., et al. (2004). When mutualists are pathogens: An experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). Journal of Evolutionary Biology, 17, 985–993.

    CAS  PubMed  Google Scholar 

  • Sicard, M., Hinsinger, J., Le Brun, N., Pages, S., Boemare, N., & Moulia, C. (2006). Interspecific competition between entomopathogenic nematodes (Steinernema) is modified by their bacterial symbionts (Xenorhabdus). BMC Evolutionary Biology, 6, 68.

    PubMed Central  PubMed  Google Scholar 

  • Sicard, M., Ramone, H., Le Brun, N., Pages, S., & Moulia, C. (2005). Specialization of the entomopathogenic nematode Steinernema scapterisci with its mutualistic Xenorhabdus symbiont. Naturwissenschaften, 92, 472–476.

    CAS  PubMed  Google Scholar 

  • Simberloff, D. (2009). The role of propagule pressure in biological invasions. Annual Review of Ecology, Evolution, and Systematics, 40, 81–102.

    Google Scholar 

  • Singh, S. K., Hodda, M., Ash, G. J., & Banks, N. C. (2013). Plant–parasitic nematodes as invasive species: Characteristics, uncertainty and biosecurity implications. Annals of Applied Biology, 163, 323–350.

    Google Scholar 

  • Smits, P. H. (1996). Post–application persistence of entomopathogenic nematodes. Biocontrol Science and Technology, 6, 379–387.

    Google Scholar 

  • Somasekhar, N., Grewal, P. S., & Klein, M. G. (2002). Genetic variability in stress tolerance and fitness among natural populations of Steinernema carpocapsae. Biological Control, 23, 303–310.

    Google Scholar 

  • Spence, K. O., Stevens, G. N., Arimoto, H., Ruiz-Vega, J., Kaya, H. K., & Lewis, E. E. (2011). Effect of insect cadaver desiccation and soil water potential during rehydration on entomopathogenic nematode (Rhabditida: Steinernematidae and Heterorhabditidae) production and virulence. Journal of Invertebrate Pathology, 106, 268–273.

    CAS  PubMed  Google Scholar 

  • Spiridonov, S. E., Moens, M., & Wilson, M. J. (2007). Fine scale spatial distributions of two entomopathogenic nematodes in a grassland soil. Applied Soil Ecology, 37, 192–201.

    Google Scholar 

  • Strong, D. R. (2002). Populations of entomopathogenic nematodes in foodwebs. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 225–240). Wallingford, UK: CAB International.

    Google Scholar 

  • Strong, D. R., Kaya, H. K., Whipple, A. V., Child, A. L., Kraig, S., Bondonno, M., et al. (1996). Entomopathogenic nematodes: Natural enemies of root–feeding caterpillars on bush lupine. Oecologia, 108, 167–173.

    Google Scholar 

  • Stuart, R. J., Barbercheck, M. E., Grewal, P. S., Taylor, R. A. J., & Hoy, C. W. (2006). Population biology of entomopathogenic nematodes: Concepts, issues, and models. Biological Control, 38, 80–102.

    Google Scholar 

  • Stuart, R. J., Lewis, E. E., & Gaugler, R. (1996). Selection alters the pattern of emergence from the host cadaver in the entomopathogenic neatode, Steinernema glaseri. Parasitology, 113, 183–189.

    Google Scholar 

  • Sudhaus, W. (2008). Evolution of insect parasitism in rhabditid and diplogastrid nematodes. Papers dedicated to Prof. Dr Bozidar Curcic. In S. E. Markarov & R. N. Dimittrijevic (Eds.), Advances in arachnology and developmental biology (pp. 143–161). Belgrade, Serbia: Institute of Zoology, Faculty of Biology, University of Belgrade.

    Google Scholar 

  • Sukhdeo, M. V. K., & Sukhdeo, S. C. (2004). Trematode behaviours and the perceptual worlds of parasites. Canadian Journal of Zoology–Revue Canadienne De Zoologie, 82, 292–315.

    Google Scholar 

  • Susurluk, A., & Ehlers, R. U. (2008). Field persistence of the entomopathogenic nematode Heterorhabditis bacteriophora in different crops. BioControl, 53, 627–641.

    Google Scholar 

  • Taylor, D. B., Szalanski, A. L., Adams, B. J., & Peterson, R. D. (1998). Susceptibility of house fly (Diptera: Muscidae) larvae to entomopathogenic nematodes (Rhabditida: Heterorhabditidae, Steinernematidae). Environmental Entomology, 27, 1514–1519.

    Google Scholar 

  • Thornton, D. C. O. (1999). Phytoplankton mucilage production in coastal waters: A dispersal mechanism in a front dominated system? Ethology Ecology & Evolution, 11, 179–185.

    Google Scholar 

  • Timper, P., Kaya, H. K., & Gaugler, R. (1988). Dispersal of the entomogenous nematode Steinernema feltiae (Rhabditida: Steinernematidae) by infected adult insects. Environmental Entomology, 17, 546–550.

    Google Scholar 

  • Torr, P., Heritage, S., & Wilson, M. J. (2004). Vibrations as a novel signal for host location by parasitic nematodes. International Journal for Parasitology, 34, 997–999.

    CAS  PubMed  Google Scholar 

  • Torr, P., Wilson, M. J., & Heritage, S. (2005). Forestry applications. In P. S. Grewal, R.-U. Ehlers, & D. I. Shapiro-Ilan (Eds.), Nematodes as biocontrol agents (pp. 281–293). Wallingford, UK: CAB International.

    Google Scholar 

  • Turlings, T. C. J., Hiltpold, I., & Rasmann, S. (2012). The importance of root–produced volatiles as foraging cues for entomopathogenic nematodes. Plant and Soil, 358, 47–56.

    Google Scholar 

  • van Tol, R., van der Sommen, A. T. C., Boff, M. I. C., van Bezooijen, J., Sabelis, M. W., & Smits, P. H. (2001). Plants protect their roots by alerting the enemies of grubs. Ecology Letters, 4, 292–294.

    Google Scholar 

  • Wallace, H. R. (1968). Dynamics of nematode movement. Annual Review of Phytopathology, 6, 91–114.

    Google Scholar 

  • Wallwork, J. A. (1970). Ecology of soil animals. London: McGraw Hill.

    Google Scholar 

  • Wang, H., Jung, Y. H., Son, D., & Choo, H. Y. (2013). High level of genetic diversity among Steinernema monticolum in Korea revealed by single–enzyme amplified fragment length polymorphism. Journal of Invertebrate Pathology, 113, 146–151.

    CAS  PubMed  Google Scholar 

  • Wang, Y., & Gaugler, R. (1998). Host and penetration site location by entomopathogenic nematodes against Japanese beetle larvae. Journal of Invertebrate Pathology, 72, 313–318.

    PubMed  Google Scholar 

  • Williams, C. D., Dillon, A. B., Girling, R. D., & Griffin, C. T. (2013). Organic soils promote the efficacy of entomopathogenic nematodes, with different foraging strategies, in the control of a major forest pest: A meta–analysis of field trial data. Biological Control, 65, 357–364.

    Google Scholar 

  • Williams, E. C., & Macdonald, O. C. (1995). Critical factors required by the nematode Steinernema feltiae for the control of the leafminers Liriomyza huidobrensis, Liriomyza bryoniae and Chromatomyia syngenesiae. Annals of Applied Biology, 127, 329–341.

    Google Scholar 

  • Wilson, M., & Gaugler, R. (2004). Factors limiting short–term persistence of entomopathogenic nematodes. Journal of Applied Entomology, 128, 250–253.

    Google Scholar 

  • Wilson, M. J., Ehlers, R.-U., & Glazer, I. (2012). Entomopathogenic nematode foraging strategies – is Steinernema carpocapsae really an ambush forager? Nematology, 14, 389–394.

    Google Scholar 

  • Wright, C. A. (1959). Host location by trematode miracidia. Annals of Tropical Medicine and Parasitology, 53, 288–292.

    CAS  PubMed  Google Scholar 

  • Wright, D. J., Peters, A., Schroer, S., & Fife, J. P. (2005). Application technology. In P. S. Grewal, R. U. Ehlers, & D. Shapiro-Ilan (Eds.), Nematodes as biocontrol agents (pp. 91–106). Wallingford, UK: CAB International.

    Google Scholar 

  • Wuyts, N., Maung, Z. T. Z., Swennen, R., & De Waele, D. (2006). Banana rhizodeposition: Characterization of root border cell production and effects on chemotaxis and motility of the parasitic nematode Radopholus similis. Plant and Soil, 283, 217–228.

    CAS  Google Scholar 

  • Yang, Y. Z., Elgeti, J., & Gompper, G. (2008). Cooperation of sperm in two dimensions: Synchronization, attraction, and aggregation through hydrodynamic interactions. Physical Review E, 78, 061903.

    Google Scholar 

  • Yang, Y. Z., Marceau, V., & Gompper, G. (2010). Swarm behavior of self–propelled rods and swimming flagella. Physical Review E, 82, 031904.

    Google Scholar 

  • Yuan, J. Z., Raizen, D. M., & Bau, H. H. (2014). Gait synchronization in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 111, 6865–6870.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zadji, L., Baimey, H., Afouda, L., Moens, M., & Decraemer, W. (2014). Comparative susceptibility of Macrotermes bellicosus and Trinervitermes occidentalis (Isoptera: Termitidae) to entomopathogenic nematodes from Benin. Nematology, 16, 719–727.

    Google Scholar 

  • Zenner, A. N. R. L., O’Callaghan, K., & Griffin, C. T. (2014). Lethal fighting in nematodes is dependent on developmental pathway: Male–male fighting in the entomopathogenic nematode Steinernema longicaudum. PloS One, 9, e89385.

    PubMed Central  PubMed  Google Scholar 

  • Zervos, S., Johnson, S. C., & Webster, J. M. (1991). Effect of temperature and inoculum size on reproduction and development of Heterorhabditis heliothidis and Steinerema glaseri (Nematoda: Rhabditoidea) in Galleria mellonella. Canadian Journal of Zoology, 69, 1261–1264.

    Google Scholar 

  • Zimmerman, R. J., & Cranshaw, W. S. (1991). Short–term movement of Neoaplectana spp (Rhabditida, Steinernematidae) and Heterorhabditis HP–88 Strain (Rhabditida, Heterorhabditidae) through turfgrass thatch. Journal of Economic Entomology, 84, 875–878.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine T. Griffin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Griffin, C.T. (2015). Behaviour and Population Dynamics of Entomopathogenic Nematodes Following Application. In: Campos-Herrera, R. (eds) Nematode Pathogenesis of Insects and Other Pests. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-18266-7_3

Download citation

Publish with us

Policies and ethics