Skip to main content

Improvement of Entomopathogenic Nematodes: A Genetic Approach

  • Chapter

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Domestication and improvement of crop plants and animals have been part of agriculture for thousands of years, and many agricultural systems are therefore artificial. Genetic manipulation of other beneficial arthropods, such as silkworms and honeybees, has been conducted for hundreds of years (Hoy, 1990; Yokoyama, 1973). As in crop breeding, four potential genetic–manipulation strategies exist: artificial selection, hybridization (use of heterosis), mutation, and recombinant DNA techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikari, B. N., Lin, C., Bai, X., Ciche, T. A., Grewal, P. S., Dillman, A. R., et al. (2009). Transcriptional profiling of trait deterioration in the insect pathogenic nematode Heterorhabditis bacteriophora. BioMed Central (BMC) Genomics, 10, 609–616.

    Google Scholar 

  • Allen, H. W. (1954). Propagation of Horogenes molestae, a parasite of the oriental fruit moth, on the potato tuber–worm. Journal of Economic Entomology, 47, 278–281.

    Article  Google Scholar 

  • Anbesse, S., Strauch, O., & Ehlers, R.-U. (2012). Genetic improvement of the biological control nematode Heterorhabditis bacteriophora (Rhabditidomorpha: Heterorhabditidae): Heterosis effect enhances desiccation but not heat tolerance. Biocontrol Science and Technology, 22, 1035–1045.

    Article  Google Scholar 

  • Anbesse, S., Sumaya, H. N., Dörfler, V. A., Strauch, O., & Ehlers, R.-U. (2013a). Selective breeding for desiccation tolerance in liquid culture provides genetically stable inbred lines of the entomopathogenic nematode Heterorhabditis bacteriophora. Applied Microbiology and Biotechnology, 97, 731–739.

    Article  CAS  PubMed  Google Scholar 

  • Anbesse, S., Sumaya, H. N., Dörfler, V. A., Strauch, O., & Ehlers, R.-U. (2013b). Stabilization of heat tolerance traits in Heterorhabditis bacteriophora through selective breeding and creation of inbred lines in liquid culture. BioControl, 58, 85–93.

    Article  Google Scholar 

  • Bai, C., Shapiro-Ilan, D. I., Gaugler, R., & Hopper, K. R. (2005). Stabilization of beneficial traits in Heterorhabditis bacteriophora through creation of inbred lines. Biological Control, 32, 220–227.

    Article  Google Scholar 

  • Bai, X., Grewal, P. S., Hogenhout, S. A., Adams, B. J., Ciche, T. A., Gaugler, R., et al. (2007). Comparative analysis of Heterorhabditis bacteriophora expressed sequence tags (ESTs). Journal of Parasitology, 93, 1343–1349.

    Article  CAS  PubMed  Google Scholar 

  • Bai, X., Adams, B. J., Ciche, T., Clifton, A., Gaugler, R., Kim, K. S., et al. (2013). A lover and a fighter: The genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. PLoS ONE, 8, e69618.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bal, K. H., Michel, P. A., & Grewal, S. P. (2014). Genetic selection of the ambush foraging entomopathogenic nematode, Steinernema carpocapsae for enhanced dispersal and its associated trade–offs. Evolutionary Ecology, 28, 923–939.

    Article  Google Scholar 

  • Barrett, J. (1991). Anhydrobiotic nematodes. Agricultural Zoology Reviews, 4, 161–176.

    Google Scholar 

  • Baur, M. E., Kaya, H. K., & Thurston, G. S. (1995). Factors affecting entomopathogenic nematode infection of Plutella xylostella on a leaf surface. Entomologia Experimentalis et Applicata, 77, 239–250.

    Article  Google Scholar 

  • Bilgrami, A. L., Gaugler, R., Shapiro-Ilan, D. I., & Adams, B. J. (2006). Source of trait deterioration in entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae during in vivo culture. Nematology, 23, 397–409.

    Article  Google Scholar 

  • Box, H. E. (1956). Battle against Venezuela’s cane borer. I. Preliminary investigations and the launching of a general campaign. Sugar (New York), 51, 25–27.

    Google Scholar 

  • Browne, J., Tunnacliffe, A., & Burnell, A. (2002). Plant desiccation gene found in nematode. Nature, 416, 3.

    Article  Google Scholar 

  • Burnell, A. M., & Dowds, B. C. A. (1996). The genetic improvement of entomopathogenic nematodes and their symbiotic bacteria: Phenotypic targets, genetic limitations and an assessment of possible hazards. Biocontrol Science and Technology, 6, 435–447.

    Article  Google Scholar 

  • Burnell, A. M., & Tunnacliffe, A. (2011). Gene induction and desiccation stress in nematodes. In R. N. Perry & D. A. Wharton (Eds.), Molecular and physiological basis of nematode survival (pp. 126–156). Wallingford, U.K.: CAB International.

    Chapter  Google Scholar 

  • Caroli, L., Glazer, I., & Gaugler, R. (1996). Entomopathogenic nematode infectivity assay: Multi variable comparison of penetration into different hosts. Biocontrol Science and Technology, 6, 227–233.

    Article  Google Scholar 

  • Chen, S., Gallop, N., & Glazer, I. (2005). Cross stress tolerance and expression of stress–related proteins in osmotically desiccated entomopathogenic nematode Steinernema feltiae IS–6. Parasitology, 131, 695–703.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., Glazer, I., Gollop, N., Cash, P., Argo, E., Innes, A., et al. (2005). Proteomic analysis of the entomopathogenic nematode Steinernema feltiae IS–6 IJs under evaporative and osmotic stresses. Molecular Biochemical Parasitology, 145, 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Ciche, T. A., & Sternberg, P. W. (2007). Postembryonic RNAi in Heterorhabditis bacteriophora: a nematode insect parasite and host for insect pathogenic symbionts. BioMed Central (BMC) Developmental Biology, 7, 101–111.

    Google Scholar 

  • Close, T. J. (1996). Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiological Plantarum, 97, 795–803.

    Article  CAS  Google Scholar 

  • Crowe, J. H., & Madin, K. A. C. (1975). Anhydrobiosis in nematodes: Evaporative water loss and survival. Journal of Experimental Zoology, 193, 323–334.

    Article  Google Scholar 

  • Dickinson, D. J., Ward, J. D., Reiner, J. D., & Goldstein, B. (2013). Engineering the Caenorhabditis elegans genome using Cas9–triggered homologous recombination. Nature Methods.

    Google Scholar 

  • Dillman, A. R., Mortazavi, A., & Sternberg, W. P. (2012). Incorporating genomics into the toolkit of nematology. Journal of Nematology, 44, 191–205.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dure, L. (1993). Plant response to cellular dehydration during environmental stress: structural motifs in LEA proteins. In T. J. Close & E. A. Bray (Eds.), Current topics in plant physiology (Vol. 10, pp. 91–103). Rockville, MD: American Society of Plant Physiologists.

    Google Scholar 

  • Ehlers, R.-U., Oestergaard, J., Hollmer, S., Wingen, M., & Strauch, O. (2005). Genetic selection for heat tolerance and low temperature activity of the entomopathogenic nematode–bacterium complex Heterorhabditis bacteriophoraPhotorhabdus luminescens. BioControl, 50, 699–716.

    Article  Google Scholar 

  • Fodor, A., Vecseri, G., & Farkas, T. (1990). Caenorhabditis elegans as a model for the study of entomopathogenic nematodes. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 249–269). Wallingford, U.K.: CAB International.

    Google Scholar 

  • Freeland, R. J. (2005). Molecular ecology. West Sussex, England: Wiley.

    Google Scholar 

  • Friedland, A. E., Tzur, B. Y., Esvelt, M. K., Colaiácovo, P. M., Church, M. G., & Calarco, A. J. (2013). Heritable genome editing in C. elegans via a CRISPR–Cas9 system. Nature Methods.

    Google Scholar 

  • Gal, T., Glazer, I., & Koltai, H. (2003). Differential gene expression during desiccation stress in Steinernema feltiae IS6. Journal of Parasitology, 89, 761–766.

    Article  PubMed  Google Scholar 

  • Gal, T., Glazer, I., & Koltai, H. (2004). An LEA3 family member is involved in survival of C. elegans during exposure to dehydration stress. FEBS Letters, 577, 21–26.

    Article  CAS  PubMed  Google Scholar 

  • Gal, T., Glazer, I., & Koltai, H. (2005). Stressed worms: Responding to the post genomic era. Molecular and Biochemical Parasitology, 143, 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Gal T., Glazer I., Sherman A., & Koltai H. (2005). Protein interaction of Nucleosome Assembly Protein–1 and Casein Kinase 2 during desiccation response in the insect–killing nematode Steinernema feltiae IS–6. Journal of Parasitology 91, 691–693.

    Google Scholar 

  • Gal, T., Solomon, A., Glazer, I., & Koltai, H. (2001). Alteration in the levels of glycogen and glycogen synthase transcripts during desiccation in the insect–killing, highly desiccation tolerant nematode Steinernema feltiae IS–6. Journal of Parasitology, 87, 725–732.

    Article  CAS  PubMed  Google Scholar 

  • Gaugler, R. (1987). Entomogenous nematodes and their prospects for genetic improvement. In K. Maramorosch (Ed.), Biotechnology in invertebrate pathology and cell culture (pp. 457–484). San Diego, CA: Academic.

    Chapter  Google Scholar 

  • Gaugler, R., & Campbell, J. F. (1989). Selection for host–finding in Steinernema feltiae. Journal of Invertebrate Pathology, 54, 363–372.

    Article  Google Scholar 

  • Gaugler, R., & Campbell, J. F. (1991). Selection for enhanced host–finding of scarab larvae (Coleoptera: Scarabaeidae) in an entomopathogenic nematode. Environmental Entomology, 20, 700–706.

    Article  Google Scholar 

  • Gaugler, R., Campbell, J. F., & McGuire, T. R. (1990). Fitness of a genetically improved entomopathogenic nematode. Journal of Invertebrate Pathology, 56, 106–l16.

    Article  Google Scholar 

  • Gaugler, R., Wilson, M., & Shearer, P. (1997). Field release and environmental fate of a transgenic entomopathogenic nematode. Biological Control, 9, 75–80.

    Article  Google Scholar 

  • Glazer, I. (1992). Survival and efficacy of Steinernema carpocapsae in an exposed environment. Biocontrol Science and Technology, 2, 101–107.

    Article  Google Scholar 

  • Glazer, I. (2002). Survival biology. In R. Gaugler (Ed.), Entomopathogenic nematodes (pp. 169–187). Wallingford, U.K.: CABI Publishing.

    Chapter  Google Scholar 

  • Glazer, I., Gaugler, R., & Segal, D. (1991). Genetics of the entomopathogenic nematode Heterorhabditis bacteriophora strain HP88: The diversity of beneficial traits. Journal of Nematology, 23, 324–333.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glazer, I., Kozodoi, E., Hashmi, G., & Gaugler, R. (1996). The entomopathogenic nematode Heterorhabditis bacteriophora IS–5; a heat tolerant isolate from Israel. Nematologica, 42, 481–492.

    Article  Google Scholar 

  • Glazer, I., Salame, L., & Segal, D. (1997). Genetic enhancement of nematicidal resistance of entomopathogenic nematodes. Biocontrol Science and Technology, 7, 499–512.

    Article  Google Scholar 

  • Grewal, P. S., Ehlers, R.-U., & Shapiro-Ilan, D. I. (2005). Nematodes a biocontrol agents. Oxfordshire, U.K.: CABI Publishing.

    Book  Google Scholar 

  • Grewal, P. S., Tomalak, M., Keil, C. B. O., & Gaugler, R. (1993). Evaluation of a genetically selected strain of Steinernema feltiae against the mushroom sciarid Lycoriella mali. Annals of Applied Biology, 123, 695–702.

    Article  Google Scholar 

  • Grewal, P. S., Gaugler, R., & Wang, Y. (1996). Enhanced cold tolerance of the entomopathogenic nematode Steinernema feltiae through genetic selection. Annals of Applied Biology, 129, 335–341.

    Article  Google Scholar 

  • Hao, Y.-J., Montiela, R., Abubuckerb, S., Mitrevab, M., & Simoes, N. (2010). Transcripts analysis of the entomopathogenic nematode Steinernema carpocapsae induced in vitro with insect haemolymph. Molecular & Biochemical Parasitology, 169, 79–86.

    Article  CAS  Google Scholar 

  • Hashmi, S., Hashmi, G., & Gaugler, R. (1995). Genetic transformation of an entomopathogenic nematode by microinjection. Journal of Invertebrate Pathology, 66, 293–296.

    Article  CAS  PubMed  Google Scholar 

  • Hashmi, S., Hashmi, G., Glazer, I., & Gaugler, R. (1998). Thermal response of Heterorhabditis bacteriophora transformed with the Caenorhabditis elegans hsp70 encoding gene. Journal of Experimental Zoology, 281, 164–170.

    Article  CAS  PubMed  Google Scholar 

  • Havron, A., Kenan, G., & Rosen, D. (1991). Selection for pesticide resistance in Aphytis. II. A. lingnanensis, a parasite of the California red scale. Entomologia Experimentalis et Applicata, 61, 221–228.

    Article  Google Scholar 

  • Havron, A., Rosen, D., Prag, H., & Rossler, Y. (1991). Selection for pesticide resistance in Aphytis. I. holoxanthas, a parasite of the Florida red scale. Entomologia Experimentalis et Applicata, 61, 229–235.

    Article  Google Scholar 

  • Hiltpold, I., Baroni, M., Toepfer, S., Kuhlmann, U., & Turlings, T. C. J. (2010a). Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. Journal of Experimental Biology, 213, 2417–2423.

    Article  CAS  PubMed  Google Scholar 

  • Hiltpold, I., Baroni, M., Toepfer, S., Kuhlmann, U., & Turlings, T. C. J. (2010b). Selective breeding of entomopathogenic nematodes for enhanced attraction to a root signal did not reduce their establishment or persistence after field release. Plant Signaling and Behavior, 5, 1450–1452.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoy, M. A. (1984). Genetic improvement of a biological control agent: Multiple pesticide resistance and nondiapause in Metaseiulus occidentalis (Nesbitt) (Pytoseiidae). In: D. A., Griffiths & C. E. Bowman (Eds.), Proceedings VI International Congress of Acarology, Acarology VI, Vol. 2. (pp. 673–679). New York, NY: Ellis Horwood Ltd., Halsted Press.

    Google Scholar 

  • Hoy, M. A. (1985a). Improving establishment of arthropod naturel enemies. In: M. A. Hoy & D. C. Herzog (Eds.). Biological control in agricultural IPM systems (pp. 151–166). Orlando, FL: Academic Press.

    Google Scholar 

  • Hoy, M. A. (1985b). Integrated mite management for California almond orchards. In: W. Helle & M. W. Sabelis (Eds.), Spider mites, their biology, natural enemies and control, Vol. IB (pp. 299–310). Amsterdam, The Netherlands: Elsevier Science Publ.

    Google Scholar 

  • Hoy, M. A. (1985c). Recent advances in genetics and genetic improvement of the Phytoseiidae. Annual Review of Entomology, 30, 345–370.

    Article  Google Scholar 

  • Hoy, M. A. (1986). Use of genetic improvement in biological control. Agriculture, Ecosystems and Environment, 15, 109–119.

    Article  Google Scholar 

  • Hoy, M. A. (1990). Genetic improvement of arthropod natural enemies: Becoming a conventional tactic? UCLA Symposia on Molecular and Cellular Biology, 112, 405–417.

    Google Scholar 

  • Hoy, M. A., & Cave, F. E. (1991). Genetic improvement of a parasitoid: Response of Trioxyspallidus to laboratory selection with Azinphosmethyl. Biocontrol Science and Technology, 1, 31–41.

    Article  Google Scholar 

  • Hoy, M. A., Conley, J., & Robinson, W. (1988). Cyhexatin and fenbutatin–oxide resistance in Pacific spider mite (Atari: Tetranychidae): Stability and mode of inheritance. Journal of Economic Entomology, 81, 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Hoyt, S. C. (1969). Integrated chemical control of insects and biological control of spider mites on apple in Washington. Journal of Economic Entomology, 62, 74–86.

    Article  CAS  Google Scholar 

  • Ingram, J., & Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 147, 377–403.

    Article  Google Scholar 

  • Ishibashi, N., Tojo, S., & Hatate, H. (1987). Desiccation survival of Steinernema feltiae str. DD–136 and possible desiccation protectants for foliage application of nematodes. In: N. Ishibashi (Ed.). Recent advances in biological control of insect pests by entomogenous nematodes in Japan (pp. 139–144). Japan: Ministry of Education.

    Google Scholar 

  • Johnigk, S. A., Hollmer, S., Strauch, O., Wyss, U., & Ehlers, R.-U. (2002). Heritability of the liquid culture mass production potential of the entomopathogenic nematode Heterorhabditis bacteriophora. Biocontrol Science and Technology, 12, 267–276.

    Article  Google Scholar 

  • Kaya, H. K. (1990). Soil ecology. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 93–115). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Koltai, H., Glazer, I., & Segal, D. (1994). Phenotypic and genetic analysis of two mutants of Heterorhabditis bacteriophora strain HP88. Journal of Nematology, 26, 32–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kung, S. P., & Gaugler, R. (1990). Soil type and entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 55, 401–406.

    Article  Google Scholar 

  • Kung, S. P., Gaugler, R., & Kaya, H. K. (1990). Influence of soil pH and oxygen on entomopathogenic nematode persistence. Journal of Nematology, 22, 440–445.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, Q.-Z., & Glazer, I. (2000). Factors affecting desiccation survival of the entomopathogenic nematodes, Heterorhabditis bacteriophora HP88. Phytoparasitica, 28, 331–340.

    Article  Google Scholar 

  • Menti, H., Wright, D. J., & Perry, R. N. (1997). Desiccation survival of populations of the entomopathogenic nematodes Steinernema feltiae and Heterorhabditis megidis from Greece and the UK. Journal of Helminthology, 71, 41–46.

    Article  CAS  PubMed  Google Scholar 

  • Moshayov, A., Koltai, H., & Glazer, I. (2013). Molecular characterization of the recovery process in the entomopathogenic nematode Heterorhabditis bacteriophora. International Journal of Parasitology, 43, 843–852.

    Article  CAS  PubMed  Google Scholar 

  • Mukuka, J., Strauch, O., & Ehlers, R.-U. (2010a). Variability in desiccation tolerance among different strains of the entomopathogenic nematode Heterorhabditis bacteriophora. Nematology, 12, 711–720.

    Article  Google Scholar 

  • Mukuka, J., Strauch, O., & Ehlers, R.-U. (2010b). Improvement of heat and desiccation tolerance in Heterorhabditis bacteriophora through cross–breeding of tolerant strains and successive genetic selection. BioControl, 55, 511–521.

    Article  Google Scholar 

  • Mukuka, J., Strauch, O., Al Zainab, H. M., & Ehlers, R.–. U. (2010). Effect of temperature and desiccation stress on infectivity of stress tolerant hybrid strains of Heterorhabditis bacteriophora. Russian Journal of Nematology, 18, 111–116.

    Google Scholar 

  • Mukuka, J., Strauch, O., Hoppe, C., & Ehlers, R.-U. (2010). Fitness of heat and desiccation tolerant hybrid strains of Heterorhabditis bacteriophora (Rhabditidomorpha: Heterorhabditidae). Journal of Pest Sciences, 83, 281–287.

    Article  Google Scholar 

  • Mukuka, J., Strauch, O., Waeyenberge, L., Viaene, N., Moens, M., & Ehlers, R.-U. (2010). Heat tolerance among different strains of the entomopathogenic nematode Heterorhabditis bacteriophora. BioControl, 55, 423–434.

    Article  Google Scholar 

  • Norton, D. C. (1978). Ecology of plant–parasitic nematodes. Westchester, NY: John Wiley & Sons.

    Google Scholar 

  • O’Leary, S. A., Stack, C. M., Chubb, M. A., & Burnell, A. M. (1998). The effect of day of emergence from the insect cadaver on the behavior and environmental tolerances of infective juveniles of the entomopathogenic nematode Heterorhabditis megidis (strain UK211). Journal of Parasitology, 84, 665–672.

    Article  PubMed  Google Scholar 

  • Pielou, D. P., & Glasser, R. F. (1952). Selection for DDT resistance in a beneficial insect parasite. Science, 115, 117–118.

    Article  CAS  PubMed  Google Scholar 

  • Ram, A., & Sharma, A. K. (1977). Selective breeding for improving the fecundity and sex ratio of Thrichogramma fasciatum (Perkins) (Trichogrammatidae: Hymenoptera), an egg parasite of lepidopterous hosts. Entomology, 2, 133–137.

    Google Scholar 

  • Ricci, M., Glazer, I., & Gaugler, R. (1996). Entomopathogenic nematode infectivity assay: Comparison of laboratory bioassays. Biocontrol Science and Technology, 6, 235–245.

    Article  Google Scholar 

  • Roush, R. T., & Hoy, M. A. (1981). Genetic improvement of Metaseiulus occidentalis: Selection with methomyl, dimethoate, and carbaryl and genetic analysis of carbaryl resistance. Journal of Economic Entomology, 74, 138–141.

    Article  Google Scholar 

  • Salame, L., Glazer, I., Chubinishvilli, M. T., & Chkhubianishvili, T. (2010). Genetic improvement of the desiccation tolerance and host–seeking ability of the entomopathogenic nematode Steinernema feltiae. Phytoparasitica, 38, 359–368.

    Article  Google Scholar 

  • Segal, D., & Glazer, I. (1998). Genetic approaches for enhancing beneficial traits in entomopathogenic nematodes. Japanese Journal of Nematology, 28, 101–107.

    Article  Google Scholar 

  • Segal, D., & Glazer, I. (2000). Genetics for improving biological control agents: The case of entomopathogenic nematodes. Crop Protection, 19, 685–689.

    Article  Google Scholar 

  • Shapiro-Ilan, D. I., Glazer, I., & Segal, D. (1996). Trait stability and fitness of the heat tolerant entomopathogenic nematode Heterorhabditis bacteriophora IS5 strain. Biological Control, 6, 238–244.

    Article  Google Scholar 

  • Shapiro-Ilan, D. I., Glazer, I., & Segal, D. (1997). Genetic improvement of heat tolerance in Heterorhabditis bacteriophora through hybridization. Biological Control, 8, 153–159.

    Article  Google Scholar 

  • Shapiro-Ilan, D. I., Stuart, J. R., & McCoy, W. C. (2005). Targeted improvement of Steinernema carpocapsae for control of the pecan weevil, Curculio caryae (Horn) (Coleoptera: Curculionidae) through hybridization and bacterial transfer. Biological Control, 34, 215–221.

    Article  Google Scholar 

  • Shapiro-Ilan, D. I., Han, R., & Dolinksi, C. (2012). Entomopathogenic nematode production and application technology. Journal of Nematology, 44, 206–217.

    PubMed Central  PubMed  Google Scholar 

  • Simmonds, F. J. (1947). Improvement of the sex ratio of a parasite by selection. Canadian Entomology, 79, 41–44.

    Article  Google Scholar 

  • Simons, W. R., & Poinar, G. O., Jr. (1973). The ability of Neoaplectana carpocapsae (Steinernematidae: Nematodea) to survive extended periods of desiccation. Journal of Invertebrate Pathology, 22, 228–230.

    Article  Google Scholar 

  • Solomon, A., Paperna, I., & Glazer, I. (1999). Desiccation survival of the entomopathogenic nematode Steinernema feltiae: Induction of anhydrobiosis. In: I. Glazer, P. Richardson, N. Boemare, & F. Coudert (Eds.), Survival strategies of entomopathogenic nematodes (pp. 83–98). Luxemburg: EUR 18855 EN Report.

    Google Scholar 

  • Solomon, A., Solomon, R., Paperna, I., & Glazer, I. (2000). Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat–stable–protein. Parasitology, 121, 409–416.

    Article  CAS  PubMed  Google Scholar 

  • Somvanshi, V. S., Koltai, H., & Glazer, I. (2008). Expression of different desiccation tolerance related genes in various species of entomopathogenic nematodes. Molecular Biochemical Parasitology, 158, 65–71.

    Article  CAS  PubMed  Google Scholar 

  • Strauch, O., Oestergaard, J., Hollmer, S., & Ehlers, R.-U. (2004). Genetic improvement of the desiccation tolerance of the entomopathogenic nematode Heterorhabditis bacteriophora through selective breeding. Biological Control, 31, 218–226.

    Article  Google Scholar 

  • Stuart, R. J., & Gaugler, R. (1996). Genetic adaptation and founder effect in laboratory populations of the entomopathogenic nematode Steinernema glaseri. Canadian Journal of Zoology, 74, 164–170.

    Article  Google Scholar 

  • Surrey, M. R., & Wharton, D. A. (1995). Desiccation survival of the infective larvae of the insect parasitic nematode, Heterorhabditis zealandica Poinar. International Journal of Parasitology, 25, 749–752.

    Article  CAS  PubMed  Google Scholar 

  • Tomalak, M. (1989). Improvement of the host-search capability as an objective of selective breeding of Steinernema bibionis (p. 36). Proceedings of Symposium on Biopesticides, Theory and Practice. Ceske Budejovice, Czech Republic.

    Google Scholar 

  • Tomalak, M. (1994a). Selective breeding of Steinernema feltiae (Filipjev) (Nematoda: Steinernematidae) for improved efficacy in control of a mushroom fly, Lycoriella solani Winnertz (Diptera: Sciaridae). Biocontrol Science and Technology, 4, 187–198.

    Article  Google Scholar 

  • Tomalak, M. (1994b). Genetic improvement of Steinernema feltiae for integrated control of the Western Flower Thrips, Frankliniella occidentalis. IOBC/WPRS Bulletin, 17, 17–20.

    Google Scholar 

  • Tomalak, M. (1994c). Phenotypic and genetic characterization of dumpy infective juvenile mutant in Steinernema feltiae (Rhabditida: Steinernematidae). Fundamental and Applied Nematology, 17, 485–495.

    Google Scholar 

  • Tomalak, M. (1997). New morphological variants of infective juveniles associated with mutations in four sex–linked genes of Steinernema feltiae (Filipjev) (Nematoda: Steinernematidae). Fundamental and Applied Nematology, 20, 541–550.

    Google Scholar 

  • Tomalak, M., & Mráček, Z. (1998). Scanning electron microscope study on morphological modifications of lateral fields in infective juveniles of mutant Steinernema feltiae (Filipjev) (Nematoda: Steinernematidae). Fundamental and Applied Nematology, 21, 89–94.

    Google Scholar 

  • Tyson, T., Reardon, W., Browne, J. A., & Burnell, A. M. (2007). Gene induction by desiccation stress in the entomopathogenic nematode Steinernema carpocapsae reveals parallels with drought tolerance mechanisms in plants. International Journal of Parasitology, 37, 763–776.

    Article  CAS  PubMed  Google Scholar 

  • Tyson, T., O’Mahony–Zamora, Z., Wong, S., Skelton, M., Daly, B., Jones, T. J., et al. (2012). A molecular analysis of desiccation tolerance mechanisms in the anhydrobiotic nematode Panagrolaimus superbus using expressed sequenced tags. BioMed Central (BMC) Research Notes, 5, 68–92.

    CAS  Google Scholar 

  • Vellai, T., Molnár, A., Lakatos, L., Bánfalvi, Z., Fodor, A., & Sáringer, G. (1999). Transgenic nematodes carrying a cloned stress resistant gene from yeast. In I. Glazer, P. Richardson, N. Boemare, & F. Coudert (Eds.), Survival of entomopathogenic nematodes (pp. 105–119). Luxemburg: European Commission Publications.

    Google Scholar 

  • Wang, X., & Grewal, P. S. (2002). Rapid genetic deterioration of environmental tolerance and reproductive potential of an entomopathogenic nematode during laboratory maintenance. Biological Control, 23, 71–78.

    Article  CAS  Google Scholar 

  • Watanabe, M. (2006). Anhydrobiosis in invertebrates. Applied Entomology and Zoology, 41, 15–31.

    Article  CAS  Google Scholar 

  • White, E. B., DeBach, P., & Garber, M. J. (1970). Artificial selection for genetic adaptation to temperature extremes in Aphytis lingnanensis Compere (Hymenoptera: Aphelinidae). Hilgardia, 40, 161–192.

    Article  Google Scholar 

  • Wilkes, A. (1942). The influence of selection on the preferendum of a chalcid (Microplectron fuscipennis Zett.) and its significance in the biological control of an insect pest. Proceedings of the Royal Society of London Series B, 130, 400–415.

    Article  Google Scholar 

  • Wilkes, A. (1947). The effects of selective breeding on the laboratory propagation of insect parasites. Proceedings of the Royal Society of London Series B, 134, 227–245.

    Article  CAS  Google Scholar 

  • Wise, M. J., & Tunnacliffe, A. (2004). POPP the question: What do LEA proteins do? Trends in Plant Science, 9, 13–17.

    Article  CAS  PubMed  Google Scholar 

  • Womersley, C. Z. (1990). Dehydration survival and anhydrobiotic potential. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 117–137). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Yokoyama, T. (1973). The history of sericultural science in relation to industry. In R. F. Smith, T. E. Mittler, & C. N. Smith (Eds.), History of entomology (pp. 267–285). Palo Alto, CA: Annual Reviews, Inc.

    Google Scholar 

  • Zioni (Cohen–Nissan), S., Glazer, I., & Segal, D. (1992). Phenotypic and genetic analysis of a mutant of Heterorhabditis bacteriophora strain HP88. Journal of Nematology, 24, 359–364.

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Glazer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glazer, I. (2015). Improvement of Entomopathogenic Nematodes: A Genetic Approach. In: Campos-Herrera, R. (eds) Nematode Pathogenesis of Insects and Other Pests. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-18266-7_2

Download citation

Publish with us

Policies and ethics