Skip to main content

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Nematodes are among the most abundant organisms on Earth, as they exist in almost every possible habitat and ecosystem (Bernard, 1992; De Ley, 2006; Ettema, 1998; Powers et al. 2009). Indeed, these organisms can be found in aquatic (marine and fresh water) and terrestrial ecosystems ranging from the tropics to the poles and from the highest to the lowest of elevations. Furthermore, nematodes have exploited a wide range of ecological niches encompassing free–living and parasitic species. Parasites have received the most attention and have been the subject of extensive research because of the damage they cause to crops, livestock, and humans (Anderson, 2000; Norton, 1978; Poinar, 1983; Stirling, Poinar, & Jansson, 1988; Wallace, 1963; Zuckerman & Rhode, 1981). However, several parasitic species are considered beneficial organisms to humans as they can be used as control agents of pests that are of agriculture, forestry or health importance (Bedding, Akhurst, & Kaya, 1993; Gaugler & Kaya, 1990; Grewal, Grewal, & Adams, 2003; Petersen, 1985; Poinar; Stock & Hunt, 2005; Wilson & Gaugler, 2000; Wilson, Glen, & George, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad, P., Gouzy, J., Aury, J. M., Castagnone-Sereno, P., Danchin, E. G., Deleury, E., et al. (2008). Genome sequence of the metazoan plant–parasitic nematode Meloidogyne incognita. Nature Biotechnology, 26, 909–915.

    CAS  PubMed  Google Scholar 

  • Abebe, E., Bonner, K., Gray, V., & Thomas, W. K. (2011). Response to ‘Bugs don’t make worms kill’. Journal of Experimental Biology, 214, 1053–1054.

    Google Scholar 

  • Abebe, E., Jumba, M., Bonner, K., Gray, V., Morris, K., & Thomas, W. K. (2010). An entomopathogenic Caenorhabditis briggsae. Journal of Experimental Biology, 213, 3223–3229.

    PubMed  Google Scholar 

  • Abu-Shadi, N., Shamseldean, M. M., Abd-Elbary, N. A., & Stock, S. P. (2011). Diversity and distribution of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) in Egypt. In Society of Nematologists 50th Annual Meeting, Corvallis OR (p. 45).

    Google Scholar 

  • Adams, B. J., Burnell, A. M., & Powers, T. O. (1998). A phylogenetic analysis of Heterorhabditis (Nemata: Rhabditidae) based on internal transcribed spacer 1 DNA sequence data. Journal of Nematology, 30, 22–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adams, B. J., Fodor, A., Koppenhöfer, H. S., Stackebrandt, E., Stock, S. P., & Klein, M. G. (2006). Biodiversity and systematics of nematode–bacterium entomopathogens. Biological Control, 38, 4–21.

    Google Scholar 

  • Akhurst, R. J. (1982). Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. Journal of General Microbiology, 128, 3061–3065.

    CAS  PubMed  Google Scholar 

  • Akhurst, R. J., & Bedding, R. A. (1986). Natural occurrence of insect pathogenic nematodes (Steinernematidae and Heterorhabditidae) in soil in Australia. Australian Journal of Entomology, 25, 241–244.

    Google Scholar 

  • An, R., & Grewal, P. S. (2010). Molecular mechanisms of persistence of mutualistic bacteria Photorhabdus in the entomopathogenic nematode host. PLoS One, 5, e13154.

    PubMed  PubMed Central  Google Scholar 

  • Andaló, V., Nguyen, K. B., & Moino, A. (2006). Heterorhabditis amazonensis n. sp. (Rhabditida: Heterorhabditidae) from Amazonas, Brazil. Nematology, 8, 853–868.

    Google Scholar 

  • Anderson, R. C. (2000). Nematode parasites of vertebrates: Their development and transmission. Wallingford, U.K: CABI Publishing.

    Google Scholar 

  • Andrassy, I. (1976). Evolution as a basis for the sytematization of nematodes. Budapest: Akademiai Kiado. 278 pp.

    Google Scholar 

  • Bai, X., Grewal, P. S., Hogenhout, S. A., Adams, B. J., Ciche, T. A., Gaugler, R., et al. (2007). Expressed sequence tag analysis of gene representation in insect parasitic nematode Heterorhabditis bacteriophora. Journal of Parasitology, 93, 1343–1349.

    CAS  PubMed  Google Scholar 

  • Baumann, L., & Baumann, P. (2005). Cospeciation between the primary endosymbionts of mealybugs and their hosts. Current Microbiology, 50, 84–87.

    CAS  PubMed  Google Scholar 

  • Bedding, R. A., Akhurst, R. J., & Kaya, H. K. (1993). Nematodes and the biological control of insect pests. East Melbourne: CSIRO Publishing.

    Google Scholar 

  • Bernard, E. C. (1992). Soil nematode biodiversity. Biology and Fertility of Soils, 14, 99–103.

    Google Scholar 

  • Blaxter, M. L., de Ley, P., Garey, J. R., Liu, L. X., Scheldeman, P., Vierstraete, A., et al. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature, 392, 71–75.

    CAS  PubMed  Google Scholar 

  • Boag, B., Neilson, R., & Gordon, S. C. (1992). Distribution and prevalence of the entomopathogenic nematode Steinernema feltiae in Scotland. Annals of Applied Biology, 121, 355–360.

    Google Scholar 

  • Bode, H. B. (2009). Entomopathogenic bacteria as a source of secondary metabolites. Current Opinion in Chemical Biology, 13, 224–230.

    CAS  PubMed  Google Scholar 

  • Boemare, N. (2002). Systematics of Photorhabdus and Xenorhabdus. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 35–56). Wallingford, U.K.: CABI Publishing.

    Google Scholar 

  • Boemare, N., & Akhurst, R. (2006). The genera Photorhabdus and Xenorhabdus. In M. Dworkin & S. Falkow (Eds.), The prokaryotes (pp. 451–494). New York: Springer.

    Google Scholar 

  • Bright, M., & Bulgheresi, S. (2010). A complex journey: Transmission of microbial symbionts. Nature Reviews Microbiology, 8, 218–230.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks, D. R., Leon-Regagnon, V., McLennan, D. A., & Zelme, D. (2006). Ecological fitting as a determinant of the community structure of platyhelminth parasites of anurans. Ecology, 87, 76–85.

    Google Scholar 

  • Burnell, A. M., & Stock, S. P. (2000). Heterorhabditis, Steinernema and their bacterial symbionts–lethal pathogens of insects. Nematology, 2, 31–42.

    Google Scholar 

  • Campos-Herrera, R., Barbercheck, M., Hoy, C. W., & Stock, S. P. (2012). Entomopathogenic nematodes as a model system for advancing the frontiers of ecology. Journal of Nematology, 44, 162–176.

    PubMed  PubMed Central  Google Scholar 

  • Campos-Herrera, R., Johnson, E. G., El-Borai, F. E., Stuart, R. J., Graham, J. H., & Duncan, L. W. (2011). Long–term stability of entomopathogenic nematode spatial patterns in soil as measured by sentinel insects and real–time PCR assays. Annals of Applied Biology, 158, 55–68.

    CAS  Google Scholar 

  • Chaston, J. M., Suen, G., Tucker, S. L., Andersen, A. W., Bhasin, A., Bode, E., et al. (2011). The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: Convergent lifestyles from divergent genomes. PloS One, 611, e27909.

    Google Scholar 

  • Chen, G., Dunphy, G. B., & Webster, J. M. (1994). Antifungal activity of two Xenorhabdus species and Photorhabdus luminescens, bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis. Biological Control, 42, 157–162.

    Google Scholar 

  • Ciche, T. A., & Ensign, J. C. (2003). For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Applied and Environmental Microbiology, 69, 1890–1897.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciche, T. A., Kim, K. S., Kaufmann-Daszczuk, B., Nguyen, N. C., & Hall, D. H. (2008). Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Applied and Environmental Microbiology, 74, 2275–2287.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Çimen, H., Lee, M. M., Hatting, J., Hazir, S., & Stock, S. P. (2014a). Steinernema tophus sp. n. Nematoda: Steinernematidae, a new entomopathogenic nematode from South Africa. Zootaxa, 38, 337–353.

    Google Scholar 

  • Çimen, H., Lee, M. M., Hatting, J., Hazir, S., & Stock, S. P. (2014b). Steinernema innovationi n. sp. Panagrolaimomorpha: Steinernematidae, a new entomopathogenic nematode species from South Africa. Journal of Helminthology, CJO2014.

    Google Scholar 

  • Clarke, D. J. (2008). Photorhabdus: A model for the analysis of pathogenicity and mutualism. Cellular Microbiology, 10, 2159–2167.

    CAS  PubMed  Google Scholar 

  • Cowles, C. E., & Goodrich-Blair, H. (2004). Characterization of a lipoprotein, NilC, required by Xenorhabdus nematophila for mutualism with its nematode host. Molecular Microbiology, 54, 464–477.

    CAS  PubMed  Google Scholar 

  • Cowles, C. E., & Goodrich-Blair, H. (2008). The Xenorhabdus nematophila nilABC genes confer the ability of Xenorhabdus spp. to colonize Steinernema carpocapsae nematodes. Journal of Bacteriology, 190, 4121–4128.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Ley, P. (2006). A quick tour of nematode diversity and the backbone of nematode phylogeny. WormBook: The Online Review of C. elegans Biology. http://www.ncbi.nlm.nih.gov/books/NBK19684.

  • Denno, R. F., Gruner, D. S., & Kaplan, I. (2008). Potential for entomopathogenic nematodes in biological control: A meta–analytical synthesis and insights from trophic cascade theory. Journal of Nematology, 40, 61–72.

    PubMed  PubMed Central  Google Scholar 

  • Dillman, A. R., Chaston, J. M., Adams, B. J., Ciche, T. A., Goodrich-Blair, H., Stock, S. P., et al. (2012). An entomopathogenic nematode by any other name. PLoS Pathogens, 83, e1002527.

    Google Scholar 

  • Duchaud, E., Rusniok, C., Frangeul, L., Buchrieser, C., Givaudan, A., Taourit, S., et al. (2003). The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nature Biotechnology, 21, 1307–1313.

    CAS  PubMed  Google Scholar 

  • El-Borai, F. E., Brentu, C. F., & Duncan, L. W. (2007). Augmenting entomopathogenic nematodes in soil from a Florida citrus orchard: Non–target effects of a trophic cascade. Journal of Nematology, 39, 203–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Borai, F. E., Duncan, L. W., & Preston, J. F. (2005). Bionomics of a phoretic association between Paenibacillus sp. and the entomopathogenic nematode Steinernema diaprepesi. Journal of Nematology, 37, 18–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eleftherianos, I., Joyce, S., Ffrench-Constant, R. H., Clarke, D. J., & Reynolds, S. E. (2010). Probing the tri–trophic interaction between insects, nematodes and Photorhabdus. Parasitology, 137, 1695–1706.

    CAS  PubMed  Google Scholar 

  • Enright, M. R., & Griffin, C. T. (2005). Effects of Paenibacillus nematophilus on the entomopathogenic nematode Heterorhabditis megidis. Journal of Invertebrate Pathology, 88, 40–48.

    PubMed  Google Scholar 

  • Ettema, C. H. (1998). Soil nematode diversity: Species coexistence and ecosystem function. Journal of Nematology, 30, 159–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira, T., Van Reenen, C. A., Endo, A., Spröer, C., Malan, A. P., & Dicks, L. M. (2013). Description of Xenorhabdus khoisanae sp. nov., the symbiont of the entomopathogenic nematode Steinernema khoisanae. International Journal of Systematic and Evolutionary Microbiology, 63, 3220–3224.

    CAS  PubMed  Google Scholar 

  • Ferreira, T., Van Reenen, C., Pagès, S., Tailliez, P., Malan, A. P., & Dicks, L. M. (2013). Photorhabdus luminescens subsp. noenieputensis subsp. nov., a symbiotic bacterium associated with a novel Heterorhabditis species related to Heterorhabditis indica. International Journal of Systematic and Evolutionary Microbiology, 63, 1853–1858.

    CAS  PubMed  Google Scholar 

  • Flores-Lara, Y., Renneckar, D., Forst, S., Goodrich-Blair, H., & Stock, S. P. (2007). Influence of nematode age and culture conditions on morphological and physiological parameters in the bacterial vesicle of Steinernema carpocapsae (Nematoda: Steinernematidae). Journal of Invertebrate Pathology, 95, 110–118.

    PubMed  Google Scholar 

  • Forst, S., & Clarke, D. J. (2002). Nematode–bacterium symbiosis. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 57–77). Wallingford, U.K.: CABI Publishing.

    Google Scholar 

  • Forst, S., Dowds, B., Boemare, N., & Stackebrandt, E. (1997). Xenorhabdus and Photorhabdus spp.: Bugs that kill bugs. Annual Review of Microbiology, 51, 47–72.

    CAS  PubMed  Google Scholar 

  • Froy, O. (2005). Convergent evolution of invertebrate defensins and nematode antibacterial factors. Trends in Microbiology, 13, 314–319.

    CAS  PubMed  Google Scholar 

  • Gaugler, R., & Kaya, H. K. (1990). Entomopathogenic nematodes in biological control. Boca Raton: CRC Press.

    Google Scholar 

  • Georgis, R., Koppenhöfer, A. M., Lacey, L. A., Bélair, G., Duncan, L. W., Grewal, P. S., et al. (2006). Successes and failures in the use of parasitic nematodes for pest control. Biological Control, 38, 103–123.

    Google Scholar 

  • Ghedin, E., Wang, S., Spiro, D., Caler, E., Zhao, Q., Crabtree, J., et al. (2007). Draft genome of the filarial nematode parasite Brugia malayi. Science, 317, 1756–1760.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grewal, P. S., Ehlers, R. U., & Shapiro-Ilan, D. I. (2005). Nematodes as biocontrol agents. Wallingford, UK: CABI Publishing.

    Google Scholar 

  • Grewal, P. S., Grewal, S. K., & Adams, B. J. (2003). Parasitism of mollusks by nematodes: Types of associations and evolutionary trends. Journal of Nematology, 35, 145–156.

    Google Scholar 

  • Griffin, C. T., O’Callaghan, K. M., & Dix, I. (2001). A self–fertile species of Steinernema from Indonesia: Further evidence of convergent evolution amongst entomopathogenic nematodes? Parasitology, 12202, 181–186.

    Google Scholar 

  • Griffin, C. T., Downes, M. J., & Block, W. (1990). Tests of Antarctic soils for insect parasitic nematodes. Antarctic Science, 2, 221–222.

    Google Scholar 

  • Gualtieri, M., Ogier, J.-C., Pagès, S., Givaudan, A., & Gaudriault, S. (2014). Draft genome sequence and annotation of the Entomopathogenic Bacterium Xenorhabdus szentirmaii Strain DSM16338. Genome Announcements, 2(2), e00190-14.

    PubMed  PubMed Central  Google Scholar 

  • Hallem, E. A., Rengarajan, M., Ciche, T. A., & Sternberg, P. W. (2007). Nematodes, bacteria, and flies: A tripartite model for nematode parasitism. Current Biology, 17, 898–904.

    CAS  PubMed  Google Scholar 

  • Hatting, J., Hazir, S., & Stock, S. P. (2008). Diversity and distribution of entomopathogenic nematodes Steinernematidae, Heterorhabditidae in South Africa. Journal of Invertebrate Pathology, 102, 120–128.

    Google Scholar 

  • Hedges, S. B. (2002). The origin and evolution of model organisms. Nature Reviews Genetics, 311, 838–849.

    Google Scholar 

  • Hirao, A., & Ehlers, R. U. (2009). Effect of temperature on the development of Steinernema carpocapsae and Steinernema feltiae Nematoda: Rhabditida in liquid culture. Applied Microbiology and Biotechnology, 84, 1061–1067.

    CAS  PubMed  Google Scholar 

  • Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov, O., et al. (2006). Phylum–wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution, 23, 1792–1800.

    CAS  PubMed  Google Scholar 

  • Hominick, W. M. (2002). Biogeography. In R. Gaugler (Ed.), Entomopathhogenic nematology (pp. 115–143). Wallinford, Oxon, UK: CABI Publishing.

    Google Scholar 

  • Hominick, W. M., Reid, A. P., Bohan, D. A., & Briscoe, B. R. (1996). Entomopathogenic nematodes: Biodiversity, geographical distribution and the convention on biological diversity. Biocontrol Science and Technology, 63, 317–332.

    Google Scholar 

  • Husník, F., Chrudimský, T., & Hypša, V. (2011). Multiple origins of endosymbiosis within the Enterobacteriaceae γ–Proteobacteria: Convergence of complex phylogenetic approaches. BMC Biology, 91, 87.

    Google Scholar 

  • Jensen, P., Strauch, O., Wyss, U., Luttmann, R., & Ehlers, R. O. (2000). Carbon dioxide triggers recovery from dauer juvenile stage in entomopathogenic nematodes Heterorhabditis spp. Nematology, 2, 319–324.

    Google Scholar 

  • Johnigk, S. A., & Ehlers, R. U. (1999). Endotokia matricida in hermaphrodites of Heterorhabditis spp. and the effect of the food supply. Nematology, 17, 717–726.

    Google Scholar 

  • Kanga, F. N., Waeyenberge, L., Hauser, S., & Moens, M. (2012). Distribution of entomopathogenic nematodes in Southern Cameroon. Journal of Invertebrate Pathology, 106, 41–51.

    Google Scholar 

  • Kaplan, F., Alborn, H. T., von Reuss, S. H., Ajredini, R., Ali, J. G., Akyazi, F., et al. (2012). Interspecific nematode signals regulate dispersal behavior. PLoS One, 7, e38735.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kary, N. E., Niknam, G., Griffin, C. T., Mohammadi, A. S., & Moghaddam, M. (2009). A survey of entomopathogenic nematodes of the families Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) in the north–west of Iran. Nematology, 11, 107–116.

    CAS  Google Scholar 

  • Kaya, H. K., & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Revue de Nematology, 38, 181–206.

    Google Scholar 

  • Kim, S. K., Flores-Lara, Y., & Stock, S. P. (2012). Morphology and ultrastructure of the bacterial receptacle in Steinernema nematodes Nematoda: Steinernematidae. Journal of Invertebrate Pathology, 110, 366–374.

    PubMed  Google Scholar 

  • Koppenhöfer, H. S. (2007). Bacterial symbionts of Steinernema and Heterorhabditis. In K. B. Nguyen & D. Hunt (Eds.), Entomopathogenic nematodes: Systematics, phylogeny and bacterial symbionts (pp. 735–808), Nematology monigraphs and perspectives, Vol. 5. Leiden: Koninklijke Brill NV.

    Google Scholar 

  • Kumar, S., Schiffer, P. H., & Blaxter, M. (2012). 959 Nematode Genomes: A semantic wiki for coordinating sequencing projects. Nucleic Acids Research, 40, 1295–1300.

    Google Scholar 

  • Kuwata, R., Qiu, L. H., Wang, W., Harada, Y., Yoshida, M., Kondo, E., et al. (2012). Xenorhabdus ishibashii sp. nov., a bacterium from the entomopathogenic nematode Steinernema aciari. International Journal of Systematic and Evolutionary Microbiology, 63, 1690–1695.

    PubMed  Google Scholar 

  • Kuwata, R., Yoshiga, T., Yoshida, M., & Kondo, E. (2007). Phylogenetic relationships of japanese Heterorhabditis nematodes and their symbiotic Photorhabdus bacteria. Journal of Nematology, 37, 39–50.

    Google Scholar 

  • Lacey, L. A., & Georgis, R. (2012). Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology, 44, 218.

    PubMed  PubMed Central  Google Scholar 

  • Lanois, A., Ogier, J. C., Gouzy, J., Laroui, C., Rouy, Z., Givaudan, A., et al. (2013). Draft genome sequence and annotation of the entomopathogenic bacterium Xenorhabdus nematophila strain F1. Genome Announcements, 13, e00342–13.

    Google Scholar 

  • Lee, M. M., & Stock, S. P. (2010a). A multilocus approach to assessing co–evolutionary relationships between Steinernema spp. Nematoda: Steinernematidae and their bacterial symbionts Xenorhabdus spp. Gamma–Proteobacteria: Enterobacteriaceae. Systematic Parasitology, 77, 1–12.

    PubMed  Google Scholar 

  • Lee, M. M., & Stock, S. P. (2010b). A multigene approach for assessing evolutionary relationships of Xenorhabdus spp. Gamma–Proteobacteria, the bacterial symbionts of entomopathogenic Steinernema nematodes. Journal of Invertebrate Pathology, 104, 67–74.

    CAS  PubMed  Google Scholar 

  • Liu, J., Berry, R. E., & Blouin, M. S. (1999). Molecular differentiation and phylogeny of entomopathogenic nematodes Rhabditida: Heterorhabditidae based on ND4 gene sequences of mitochondrial DNA. Journal of Parasitology, 85, 709–715.

    CAS  PubMed  Google Scholar 

  • Liu, J., Berry, R. E., & Moldenke, A. F. (1997). Phylogenetic relationships of entomopathogenic nematodes Heterorhabditdae and Steinernematidae inferred from partial 18S rRNA gene sequences. Journal of Invertebrate Pathology, 69, 246–252.

    CAS  PubMed  Google Scholar 

  • Malan, A., Knoetze, R., & Moore, S. D. (2011). Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. Journal of Invertebrate Pathology, 108, 115–125.

    PubMed  Google Scholar 

  • Maneesakorn, P., An, R., Daneshvar, H., Taylor, K., Bai, X., Adams, B. J., et al. (2011). Phylogenetic and cophylogenetic relationships of entomopathogenic nematodes Heterorhabditis (Rhabditida) and their symbiotic bacteria Photorhabdus (Enterobacteriaceae). Molecular Phylogenetics and Evolution, 59, 271–280.

    PubMed  Google Scholar 

  • McMullen, J. G., Lee, M. M., & Stock, S. P. (2014). In vivo and in vitro rearing of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae). Journal of Visualized Experiments, 91, e52096.

    Google Scholar 

  • Miranda, V. A., Navarro, P. D., Davidowitz, G., Bronstein, J., & Stock, S. P. (2013). Effect of insect host age and diet on the fitness of the entomopathogenic nematode–bacteria mutualism. Symbiosis, 61, 145–153.

    CAS  Google Scholar 

  • Morán, N. A., Tran, P., & Gerardo, N. A. (2005). Symbiosis and insect diversification: an ancient symbiont of sap–feeding insects from the bacterial phylum Bacteroidetes. Applied and Environmental Microbiology, 71, 8802–8810.

    PubMed  PubMed Central  Google Scholar 

  • Mráček, Z., Bečvář, S., Kindlmann, P., & Jersáková, J. (2005). Habitat preference for entomopathogenic nematodes, their insect hosts and new faunistic records for the Czech Republic. Biological Control, 34, 27–37.

    Google Scholar 

  • Murfin, K. E., Lee, M. M., Klassen, J., McDonald, B., Larget, B., Forst, S., Stock, S. P., Currie, C., & Goodrich-Blair, H. (2015). Xenorhabdus bovienii bacterial strain diversity impacts coevolution and symbiotic maintenance with Steinernema spp. nematode hosts. mBio 015-03-26 14:51.

    Google Scholar 

  • Nadler, S. A., Bolotin, E., & Stock, S. P. (2006). Phylogenetic relationships of Steinernema (Cephalobina, Steinernematidae) based on nuclear, mitochondrial, and morphological data. Systematic Parasitology, 63, 159–179.

    Google Scholar 

  • Navarro, P. D., McMullen, J. G., II, & Stock, S. P. (2014). Interactions between the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae) and the saprobic fungus Fusarium oxysporum (Ascomycota: Hypocreales). Journal of Invertebrate Pathology, 115, 41–47.

    CAS  PubMed  Google Scholar 

  • Nguyen, K. B., & Duncan, L. W. (2002). Steinernema diaprepesi n. sp. Rhabditida: Steinernematidae, a parasite of the citrus root weevil Diaprepes abbreviatus L Coleoptera: Curculionidae. Journal of Nematology, 34, 159–170.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, K. B., Maruniak, J., & Adams, J. B. (2001). Diagnostic and phylogenetic utility of the rDNA internal transcribed spacer sequences of Steinernema. Journal of Nematology, 33, 73–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noguez, J. H., Conner, E. S., Zhou, Y., Ciche, T. A., Ragains, J. R., & Butcher, R. A. (2012). A novel ascaroside controls the parasitic life cycle of the entomopathogenic nematode Heterorhabditis bacteriophora. ACS Chemical Biology, 7, 961–966.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norton, D. C. (1978). Ecology of plant–parasitic nematodes. New York, NY: Wiley.

    Google Scholar 

  • Orozco, R. A., Hill, T., & Stock, S. P. (2013). Characterization and phylogenetic relationship of Photorhabdus luminescens subsp. sonorensis (γ–Proteobacteria: Enterobacteriaceae) the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Current Microbiology, 66, 30–39.

    CAS  PubMed  Google Scholar 

  • Park, G. S., Khan, A. R., Hong, S. J., Jang, E. K., Ullah, I., Jung, B. K., et al. (2013). Draft genome sequence of entomopathogenic bacterium Photorhabdus temperata strain M1021, isolated from nematodes. Genome Announcements, 15, e00747–13.

    Google Scholar 

  • Petersen, J. J. (1985). Nematodes as biological control agents: Part I. Mermithidae. Advances in Parasitology, 24, 307–344.

    CAS  PubMed  Google Scholar 

  • Phan, K. L., Subbotin, S. A., Nguyen, N. C., & Moens, M. (2003). Heterorhabditis baujardi sp. n. (Rhabditida: Heterorhabditidae) from Vietnam and morphometric data for H. indica populations. Nematology, 53, 367–382.

    Google Scholar 

  • Poinar, G. O., Jr. (1983). The natural history of nematodes. Englewood Cliffs, NJ: Prentice-Hall, Inc. 323pp.

    Google Scholar 

  • Poinar, G. O., Jr. (1990). Entomopathogenic nematodes in biological control. In R. Gaugler & K. H. Kaya (Eds.), Taxonomy and biology of Steinernematidae and Heterorhabditidae (pp. 23–74). Boca Raton, Fl: CRC Press, Inc.

    Google Scholar 

  • Poinar, G. O., Jr. (1993). Origins and phylogenetic relationships of the entomophilic rhabditids, Heterorhabditis and Steinernema. Fundamental and Applied Nematology, 16, 333–338.

    Google Scholar 

  • Powers, T. O., Neher, D. A., Mullin, P., Esquivel, A., Giblin‐Davis, R. M., Kanzaki, N., et al. (2009). Tropical nematode diversity: Vertical stratification of nematode communities in a Costa Rican humid lowland rainforest. Molecular Ecology, 185, 985–996.

    Google Scholar 

  • Read, D. S., Sheppard, S. K., Bruford, M. W., Glen, D. M., & Symondson, W. O. C. (2006). Molecular detection of predation by soil micro–arthropods on nematodes. Molecular Ecology, 15, 1963–1972.

    CAS  PubMed  Google Scholar 

  • Ryder, J. J., & Griffin, C. T. (2002). Density–dependent fecundity and infective juvenile production in the entomopathogenic nematode, Heterorhabditis megidis. Parasitology, 125, 83–92.

    CAS  PubMed  Google Scholar 

  • San-Blas, E. (2013). Progress on entomopathogenic nematology research: A bibliometric study of the last three decades: 1980–2010. Biological Control, 66, 102–124.

    Google Scholar 

  • San-Blas, E., Gowen, S. R., & Pwembroke, B. (2008). Steinernema feltiae: Ammonia triggers the emergence of their infective juveniles. Experimental Parasitology, 119, 180–185.

    CAS  PubMed  Google Scholar 

  • Sandhu, S. K., Jagdale, G. B., Hogenhout, S. A., & Grewal, P. S. (2006). Comparative analysis of the expressed genome of the infective juvenile entomopathogenic nematode, Heterorhabditis bacteriophora. Molecular and Biochemical Parasitology, 145, 239–244.

    CAS  PubMed  Google Scholar 

  • Schwartz, H. T., Antoshechkin, I., & Sternberg, P. W. (2011). Applications of high–throughput sequencing to symbiotic nematodes of the genus Heterorhabditis. Symbiosis, 55, 111–118.

    CAS  Google Scholar 

  • Shapiro-Ilan, D., Gouge, D. H., & Koppenhöfer, A. M. (2002). Factors affecting commercial success: case study in cotton, turf and citrus. In R. Gauger (Ed.), Entomopathogenic nematology (pp. 333–353). Wallinfoed, UK: CAB International.

    Google Scholar 

  • Shapiro-Ilan, D. I., Han, R., & Dolinski, C. (2012). Entomopathogenic nematode production and application technology. Journal of Nematology, 44, 226–235.

    Google Scholar 

  • Sicard, M., Ferdy, J. B., Le Brun, N., Godelle, B., Boemare, N., & Moulia, C. (2004). When mutualists are pathogens: An experimental study of the symbioses between Steinernema entomopathogenic nematodes and Xenorhabdus bacteria. Journal of Evolutionary Biology, 17, 985–993.

    CAS  PubMed  Google Scholar 

  • Sicard, M., Le Brun, N., Pages, S., Godelle, B., Boemare, N., & Moulia, C. (2003). Effect of native Xenorhabdus on the fitness of their Steinernema hosts: Contrasting types of interaction. Parasitology Research, 91, 520–524.

    PubMed  Google Scholar 

  • Sicard, M., Ramone, H., Le Brun, N., Pagès, S., & Moulia, C. (2005). Specialization of the entomopathogenic nematode Steinernema scapterisci with its mutualistic Xenorhabdus symbiont. Naturwissenschaften, 9210, 472–476.

    Google Scholar 

  • Snyder, H., Stock, S. P., Kim, S. K., Flores-Lara, Y., & Forst, S. (2007). New insights into the colonization and release processes of Xenorhabdus nematophila and the morphology and ultrastructure of the bacterial receptacle of its nematode host, Steinernema carpocapsae. Applied and Environmental Microbiology, 73, 5338–5346.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer, R., & Ogawa, A. (2011). Hormone signaling and phenotypic plasticity review in nematode development and evolution. Current Biology, 21, 758–766.

    Google Scholar 

  • Spiridonov, S. E., Reid, A. P., Podrucka, K., Subbotin, S. A., & Moens, M. (2004). Phylogenetic relationships within the genus Steinernema Nematoda: Rhabditida as inferred from analyses of sequences of the ITS1–5.8S–ITS2 region of rDNA and morphological features. Nematology, 6, 547–566.

    CAS  Google Scholar 

  • Stirling, G. R., Poinar, G. O., Jr., & Jansson, H. B. (1988). Biological control of plant–parasitic nematodes. Wallingford: CRC Press.

    Google Scholar 

  • Stock, S. P. (2005). Insect–parasitic nematodes: From lab curiosities to model organisms. Journal of Invertebrate Pathology, 89, 57–66.

    PubMed  Google Scholar 

  • Stock, S. P. (2009). Molecular approaches and the taxonomy of insect–parasitic and pathogenic nematodes. In S. P. Stock, J. Vandenberg, N. E. Boemare, & I. Glazer (Eds.), Insect pathogens: Molecular approaches and techniques (pp. 71–100). Wallingford, Oxon, England, UK: CABI Publishing.

    Google Scholar 

  • Stock, S. P., Campbell, J. F., & Nadler, S. A. (2001). Phylogeny of Steinernema Travassos, 1927 (Cephalobina: Steinernematidae) inferred from ribosomal DNA sequences and morphological characters. Journal of Parasitology, 87, 877–889.

    CAS  PubMed  Google Scholar 

  • Stock, S. P., & Goodrich-Blair, H. (2008a). Nematode–bacterium symbioses: Crossing kingdom and disciplinary boundaries. Symbiosis, 46, 61–64.

    Google Scholar 

  • Stock, S. P., & Goodrich-Blair, H. (2008b). Entomopathogenic nematodes and their bacterial symbionts: The inside out of a mutualistic association. Symbiosis, 46, 65–75.

    Google Scholar 

  • Stock, S. P., & Goodrich-Blair, H. (2012). Nematode parasites, pathogens and associated of insects and invertebrates of economic importance. In L. A. Lacey (Ed.), Manual of techniques in invertebrate pathology (pp. 373–426). Yakima, WA, U.S.: Elsevier.

    Google Scholar 

  • Stock, S. P., Griffin, S. P., & Chaerani, R. T. (2004). Morphological and molecular characterisation of Steinernema hermaphroditum n. sp. (Nematoda: Steinernematidae), an entomopathogenic nematode from Indonesia, and its phylogenetic relationships with other members of the genus. Nematology, 63, 401–412.

    Google Scholar 

  • Stock, S. P., & Hunt, D. J. (2005). Morphology and systematics of nematodes used in biocontrol. In P. S. Grewal, R. U. Ehlers, & D. Shapiro-Ilan (Eds.), Nematodes as biocontrol agents. New York, NY, U.S: CABI Publishing.

    Google Scholar 

  • Stock, S. P., Lee, M. M., & Flores-Lara, Y. (2012). The rectal glands of Heterorhabditis bacteriophora Rhabditida: Heterorhabditidae hermaphrodites and their role in symbiont transmission. Journal of Invertebrate Pathology, 101, 135–138.

    Google Scholar 

  • Stokwe, N. M. (2009). Entomopathogenic nematodes: characterization of a new species, long–term storage and control of obscure mealybug, Pseudococcus viburni (Hemiptera: Pseudococcidae) under laboratory conditions. MSc thesis, Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.

    Google Scholar 

  • Strong, D. R. (2002). Populations of entomopathogenic nematodes in foodwebs. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 225–240). Wallingford, Oxon, U.K.: CABI Publishing.

    Google Scholar 

  • Strong, D. R. (2007). Spatial ecology of food webs with entomopathogenic nematodes. Phytopathology, 97, S143–S143.

    Google Scholar 

  • Szalanski, A. L., Taylor, D. B., & Mullin, P. G. (2000). Assessing nuclear and mitochondrial DNA sequence variation within Steinernema (Rhabditida: Steinernematidae). Journal of Nematology, 32, 229–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szállás, E., Pukall, R., Pamjav, H., Kovacs, G., Buzas, Z., Fodor, A., et al. (2001). Passengers who missed the train: Comparative sequence analysis, PhastSystem PAGE PCR–RFLP and automated RiboPrint phenotypes of Photorhabdus strains. In C. T. Gri Yn, A. M. Burnell, M. J. Downes, & R. Mulder (Eds.), Developments in entomopathogenic nematode/bacterial research (pp. 36–53). Luxumberg: European Commission Publications.

    Google Scholar 

  • Tailliez, P., Laroui, C., Ginibre, N., Paule, A., Pagès, S., & Boemare, N. (2010). Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein–coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp nov., P. temperata subsp khanii subsp. nov., P. temperata subsp tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. International Journal of Systematic and Evolutionary Microbiology, 60, 1921–1937.

    PubMed  Google Scholar 

  • Tailliez, P., Pagès, S., Ginibre, N., & Boemare, N. (2006). New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. International Journal of Systematic and Evolutionary Microbiology, 56, 2805–2818.

    CAS  PubMed  Google Scholar 

  • Thao, M. L., Moran, N. A., Abbot, P., Brennan, E. B., Burkhardt, D. H., & Baumann, P. (2000). Cospeciation of psyllids and their primary prokaryotic endosymbionts. Applied and Environmental Microbiology, 66, 2898–2905.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timper, P., & Kaya, H. K. (1992). Impact of a nematode–parasitic fungus on the effectiveness of entomogenous nematodes. Journal of Nematology, 24, 1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torr, P., Spiridonov, S. E., Heritage, S., & Wilson, M. J. (2007). Habitat associations of two entomopathogenic nematodes: a quantitative study using real–time quantitative polymerase chain reactions. Journal of Animal Ecology, 76, 238–245.

    PubMed  Google Scholar 

  • Torres-Barragan, A., Suazo, A., Buhler, W. G., & Cardoza, Y. J. (2011). Studies on the entomopathogenicity and bacterial associates of the nematode Oscheius carolinensis. Biological Control, 59, 123–129.

    Google Scholar 

  • Tóth, T., & Lakatos, T. (2008). Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. International Journal of Systematic and Evolutionary Microbiology, 58, 2579–2581.

    PubMed  Google Scholar 

  • Wallace, H. R. (1963). The biology of plant parasitic nematodes (p. 280). London: CABI Publishing.

    Google Scholar 

  • Wang, J., & Bedding, R. A. (1996). Population development of Heterorhabditis bacteriophora and Steinernema carpocapsae in the larvae of Galleria mellonella. Fundamental and Applied Nematology, 19, 363–367.

    Google Scholar 

  • Wilkinson, P., Waterfield, N. R., Crossman, L., Corton, C., Sanchez-Contreras, M., Vlisidou, I., et al. (2009). Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics, 10, 302.

    PubMed  PubMed Central  Google Scholar 

  • Wilson, M. J., & Gaugler, R. (2000). Terrestrial mollusk pests. In L. Lacey & H. K. Kaya (Eds.), Field manual of techniques in invertebrate pathology (pp. 787–804). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Wilson, M. J., Glen, D. M., & George, S. K. (1993). The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs. Biocontrol Science and Technology, 34, 503–511.

    Google Scholar 

  • Wright, D. J. (2004). Osmoregulatory and excretory behaviour. In R. Gaugler & A. L. Bilgrami (Eds.), Nematode behaviour (pp. 177–196). Wallingford, U.K.: CAB International.

    Google Scholar 

  • Ye, W., Torres-Barragan, A., & Cardoza, Y. J. (2010). Oscheius carolinensis n. sp. (Nematoda: Rhabditidae), a potential entomopathogenic nematode from vermicompost. Nematology, 12, 121–135.

    CAS  Google Scholar 

  • Zhang, C., Liu, J., Xu, M., Sun, J., Yang, S., An, X., et al. (2008). Heterorhabditidoides chongmingensis gen. nov., sp. nov. (Rhabditida: Rhabditidae), a novel member of the entomopathogenic nematodes. Journal of Invertebrate Pathology, 98, 153–168.

    CAS  PubMed  Google Scholar 

  • Zhang, C. X., Yang, S. Y., Xu, M. X., Sun, J., Liu, H., L., J. R., Kan, F., Sun, J., Lai, R., Zhang, K. Y. (2009). Serratia nematodiphila sp. nov., associated symbiotically with the entomopathogenic nematode Heterorhabditidoides chongmingensis (Rhabditida: Rhabditidae). International Journal of Systematic and Evolutionary Microbiology, 59, 1603–1608.

    Google Scholar 

  • Zuckerman, B., & Rhode, R. A. (1981). Plant parasitic nematodes (Vol. 3). New York, NY, U.S: Academic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Patricia Stock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stock, S.P. (2015). Diversity, Biology and Evolutionary Relationships. In: Campos-Herrera, R. (eds) Nematode Pathogenesis of Insects and Other Pests. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-18266-7_1

Download citation

Publish with us

Policies and ethics