Skip to main content

Primal-Dual Algorithms for Precedence Constrained Covering Problems

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8952))

Included in the following conference series:

  • 747 Accesses

Abstract

A covering problem is an integer linear program of type \(\min \{c^Tx\mid Ax\ge D,\ 0\le x\le d,\ x \text{ integral }\}\) where \(A\in \mathbb {Z}^{m\times n}_+\), \(D\in \mathbb {Z}_+^m\), and \(c,d\in \mathbb {Z}_+^n\). In this paper, we study covering problems with additional precedence constraints \(\{x_i\le x_j \ \forall j\preceq i \in \mathcal {P}\}\), where \(\mathcal {P}=([n], \preceq )\) is some arbitrary, but fixed partial order on the items represented by the column-indices of \(A\). Such precedence constrained covering problems (PCCP) are of high theoretical and practical importance even in the special case of the precedence constrained knapsack problem, i.e., where \(m=1\) and \(d\equiv 1\).

Our main result is a strongly-polynomial primal-dual approximation algorithm for PCCP with \(d\equiv 1\). Our approach generalizes the well-known knapsack cover inequalities to obtain an IP formulation which renders any explicit precedence constraints redundant. The approximation ratio of this algorithm is upper bounded by the width of \(\mathcal {P}\), i.e., by the size of a maximum antichain in \(\mathcal {P}\). Interestingly, this bound is independent of the number of constraints. We are not aware of any other results on approximation algorithms for PCCP on arbitrary posets \(\mathcal {P}\). For the general case with , we present pseudo-polynomial algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boland, N., Bley, A., Fricke, C., Froyland, G., Sotirov, R.: Clique-based facets for the precedence constrained knapsack problem. Math. Program. 133(1–2), 481–511 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boyd, A.: Polyhedral results for the precedence-constrained knapsack problem. Discret. Appl. Math. 41(3), 185–201 (1993)

    Article  MATH  Google Scholar 

  3. Carnes, T., Shmoys, D.B.: Primal-dual schema for capacitated covering problems. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 288–302. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Carr, R., Fleischer, L., Leung, V., Phillips, C.: Strengthening integrality gaps for capacitated network design and covering problems. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 106–115. Society for Industrial and Applied Mathematics (2000)

    Google Scholar 

  5. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the hardness of hypergraph vertex cover. SIAM J. Comput. 34(5), 1129–1146 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fujito, T., Yabuta, T.: Submodular integer cover and its application to production planning. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp. 154–166. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Hajiaghayi, M., Jain, K., Konwar, K., Lau, L., Mandoiu, I., Russell, A., Shvartsman, A., Vazirani, V.: The minimum k-colored subgraph problem in haplotyping and dna primer selection. In: Proceedings of the International Workshop on Bioinformatics Research and Applications (IWBRA) (2006)

    Google Scholar 

  8. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM (JACM) 22(4), 463–468 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  9. Johnson, D., Niemi, K.: On knapsacks, partitions, and a new dynamic programming technique for trees. Math. Oper. Res. 8(1), 1–14 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  11. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-\(\varepsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kolliopoulos, S.G., Steiner, G.: Partially-ordered knapsack and applications to scheduling. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 612–624. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Kolliopoulos, S.G., Young, N.E.: Tight approximation results for general covering integer programs. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science, 2001, pp. 522–528. IEEE (2001)

    Google Scholar 

  14. Koufogiannakis, C., Young, N.E.: Greedy \(\delta \)-approximation algorithm for covering with arbitrary constraints and submodular cost. Algorithmica 66(1), 113–152 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Van de Leensel, R., van Hoesel, C., van de Klundert, J.: Lifting valid inequalities for the precedence constrained knapsack problem. Math. program. 86(1), 161–185 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Park, K., Park, S.: Lifting cover inequalities for the precedence-constrained knapsack problem. Discret. Appl. Math. 72(3), 219–241 (1997)

    Article  MATH  Google Scholar 

  17. Pritchard, D., Chakrabarty, D.: Approximability of sparse integer programs. Algorithmica 61(1), 75–93 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Trevisan, L.: Non-approximability results for optimization problems on bounded degree instances. In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, pp. 453–461. ACM (2001)

    Google Scholar 

  19. Woeginger, G.: On the approximability of average completion time scheduling under precedence constraints. Discret. Appl. Math. 131(1), 237–252 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wierz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wierz, A., Peis, B., McCormick, S.T. (2015). Primal-Dual Algorithms for Precedence Constrained Covering Problems. In: Bampis, E., Svensson, O. (eds) Approximation and Online Algorithms. WAOA 2014. Lecture Notes in Computer Science(), vol 8952. Springer, Cham. https://doi.org/10.1007/978-3-319-18263-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18263-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18262-9

  • Online ISBN: 978-3-319-18263-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics