Skip to main content

Generalized Hypergraph Matching via Iterated Packing and Local Ratio

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8952))

Included in the following conference series:

Abstract

In \(k\)-hypergraph matching, we are given a collection of sets of size at most \(k\), each with an associated weight, and we seek a maximum-weight subcollection whose sets are pairwise disjoint. More generally, in \(k\)-hypergraph \(b\)-matching, instead of disjointness we require that every element appears in at most \(b\) sets of the subcollection. Our main result is a linear-programming based \((k-1+\tfrac{1}{k})\)-approximation algorithm for \(k\)-hypergraph \(b\)-matching. This settles the integrality gap when \(k\) is one more than a prime power, since it matches a previously-known lower bound. When the hypergraph is bipartite, we are able to improve the approximation ratio to \(k-1\), which is also best possible relative to the natural LP. These results are obtained using a more careful application of the iterated packing method.

Using the bipartite algorithmic integrality gap upper bound, we show that for the family of combinatorial auctions in which anyone can win at most \(t\) items, there is a truthful-in-expectation polynomial-time auction that \(t\)-approximately maximizes social welfare. We also show that our results directly imply new approximations for a generalization of the recently introduced bounded-color matching problem.We also consider the generalization of \(b\)-matching to demand matching, where edges have nonuniform demand values. The best known approximation algorithm for this problem has ratio \(2k\) on \(k\)-hypergraphs. We give a new algorithm, based on local ratio, that obtains the same approximation ratio in a much simpler way.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A hypergraph is \(k\)-dimensional if for some \(k\)-partition of the ground set, every edge intersects every part exactly once.

  2. 2.

    In detail, the solutions \(x^i\) for \(i \in Q_v\) have degree 1 at \(v\), so by the definition of a convex combination \((Ax)_v = \lambda (Q_v)\), but \((Ax)_v \le 1 - t\) since, by feasibility, \(1 \ge A(x+t\chi _e)_v = (Ax)_v + t\).

  3. 3.

    Splitting means to replace the term \((x^i, \lambda ^i)\) with two terms \((x^i, p), (x^i, \lambda ^i-p)\) with distributed \(\lambda \)-mass on the same integer solution \(x^i\).

References

  1. Aharoni, R., Kessler, O.: On a possible extension of hall’s theorem to bipartite hypergraphs. Discret. Math. 84(3), 309–313 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arkin, E.M., Hassin, R.: On local search for weighted k-set packing. Math. Oper. Res. 23(3), 640–648 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bansal, N., Korula, N., Nagarajan, V., Srinivasan, A.: On k-column sparse packing programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 369–382. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: a unified framework for approximation algorithms. ACM Comput. Surv. 36(4), 422–463 (2004)

    Article  Google Scholar 

  5. Bar-Yehuda, R., Halldórsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling split intervals. SIAM J. Comput. 36(1), 1–15 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bar-Yehuda, R., Rawitz, D.: On the equivalence between the primal-dual schema and the local ratio technique. SIAM J. Discret. Math. 19(3), 762–797 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bar-Yehuda, R., Rawitz, D.: A tale of two methods. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 196–217. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Berman, P.: A \(d\)/2 approximation for maximum weight independent set in \(d\)-claw free graphs. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 214–219. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Carr, R.D., Vempala, S.: Randomized metarounding. Random Struct. Algorithms 20(3), 343–352 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chan, Y., Lau, L.: On linear and semidefinite programming relaxations for hypergraph matching. Math. Program. 135, 123–148 (2011)

    Article  MathSciNet  Google Scholar 

  11. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree and packing integer programs. ACM Trans. Algorithms 3(3) (2007)

    Google Scholar 

  12. Feige, U., Singh, M.: Edge coloring and decompositions of weighted graphs. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 405–416. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Feldman, M., Naor, J.S., Schwartz, R., Ward, J.: Improved approximations for k-exchange systems. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 784–798. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Füredi, Z.: Maximum degree and fractional matchings in uniform hypergraphs. Combinatorica 1, 155–162 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Füredi, Z., Kahn, J., Seymour, P.D.: On the fractional matching polytope of a hypergraph. Combinatorica 13(2), 167–180 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating \(k\)-set packing. Comput. Complex. 15(1), 20–39 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every \(t\) of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discret. Math. 2(1), 68–72 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf. Process. Lett. 37(1), 27–35 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Koufogiannakis, C., Young, N.E.: Distributed fractional packing and maximum weighted b-matching via tail-recursive duality. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 221–238. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Krysta, P.: Greedy approximation via duality for packing, combinatorial auctions and routing. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 615–627. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear programming. In: Proceedings of the 46th FOCS, pp. 595–604 (2005)

    Google Scholar 

  22. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, New York (2007)

    Book  MATH  Google Scholar 

  23. Parekh, O.: Iterative packing for demand and hypergraph matching. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 349–361. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Person, Y., Schacht, M.: Almost all hypergraphs without fano planes are bipartite. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp. 217–226. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Google Scholar 

  25. Schrijver, A.: Combinatorial Optimization. Springer, New York (2003)

    MATH  Google Scholar 

  26. Shepherd, F.B., Vetta, A.: The demand-matching problem. Math. Oper. Res. 32(3), 563–578 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Stamoulis, G.: Approximation algorithms for bounded color matchings via convex decompositions. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 625–636. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  28. Tutte, W.: A short proof of the factor theorem for finite graphs. Can. J. Math. 6, 347–352 (1954)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ojas Parekh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Parekh, O., Pritchard, D. (2015). Generalized Hypergraph Matching via Iterated Packing and Local Ratio. In: Bampis, E., Svensson, O. (eds) Approximation and Online Algorithms. WAOA 2014. Lecture Notes in Computer Science(), vol 8952. Springer, Cham. https://doi.org/10.1007/978-3-319-18263-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18263-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18262-9

  • Online ISBN: 978-3-319-18263-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics