Skip to main content

Gradient Theory for Geometrically Nonlinear Plasticity via the Homogenization of Dislocations

  • Chapter

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 78))

Abstract

This article gives a short description and a slight refinement of recentwork [MSZ15], [SZ12] on the derivation of gradient plasticity models fromdiscrete dislocations models.We focus on an array of parallel edge dislocations. This reduces the problem to a two-dimensional setting. As in the work Garroni, Leoni & Ponsiglione [GLP10] we show that in the regime where the number of dislocation N ε is of the order log \({1}\over{\varepsilon}\) (where ε is the ratio of the lattice spacing and the macroscopic dimensions of the body) the contributions of the self-energy of the dislocations and their interaction energy balance. Upon suitable rescaling one obtains a continuum limit which contains an elastic energy term and a term which depends on the homogenized dislocation density. The main novelty is that our model allows for microscopic energies which are not quadratic and reflect the invariance under rotations. A key mathematical ingredient is a rigidity estimate in the presence of dislocations which combines the nonlinear Korn inequality of Friesecke, James & Müller [FJM02] and the linear Bourgain & Brezis estimate [BB07] for vector fields with controlled divergence. The main technical improvement of this article compared to [MSZ15] is the removal of the upper bound W(F) ≤ Cdist 2(F,SO(2)) on the stored energy function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anguige, K., Dondl, P.: Optimal energy scaling for a shear experiment in single-crystal plasticity with cross-hardening. Zeitschrift für Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathématiques et de Physique Appliquées 65(5), 1011–1030 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anguige, K., Dondl, P.W.: Relaxation of the single-slip condition in strain-gradient plasticity. arXiv.org (February 2014)

    Google Scholar 

  3. Anguige, K., Dondl, P.W.: Energy estimates, relaxation, and existence for strain-gradient plasticity with cross-hardening. In: Hackl, K., Conti, S. (eds.) Analysis and Computation of Microstructure in Finite Plasticity. LNACM, vol. 78, pp. 157–174. Springer, Heidelberg (2015)

    Google Scholar 

  4. Ariza, M.P., Ortiz, M.: Discrete crystal elasticity and discrete dislocations in crystals. Archive for Rational Mechanics and Analysis 178(2), 149–226 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aumann, S.: Spontaneous breaking of rotational symmetry with arbitrary defects and a rigidity estimate. Preprint, pp. 1–40 (January 2015)

    Google Scholar 

  6. Bourgain, J., Brezis, H.: New estimates for elliptic equations and Hodge type systems. Journal of the European Mathematical Society (JEMS) 9(2), 277–315 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bacon, D., Barnett, D., Scattergood, R.: Anisotropic continuum theory of lattice defects. Progress in Materials Science 23, 51–262 (1978)

    Article  Google Scholar 

  8. Conti, S., Dolzmann, G., Müller, S.: Korn’s second inequality and geometric rigidity with mixed growth conditions. Calculus of Variations and Partial Differential Equations 50(1-2), 437–454 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cermelli, P.: Material Symmetry and Singularities in Solids. Proceedings of The Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences 455, 299–322 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Conti, S., Garroni, A., Massaccesi, A.: Modeling of dislocations and relaxation of functionals on 1-currents with discrete multiplicity. Calc. Var. PDE (2015), doi:10.1007/s00526-015-0846-x

    Google Scholar 

  11. Conti, S., Garroni, A., Ortiz, M.: The line-tension approximation as the dilute limit of linear-elastic dislocations. Preprint, pp. 1–57 (February 2015)

    Google Scholar 

  12. De Luca, L., Garroni, A., Ponsiglione, M.: Gamma-convergence analysis of systems of edge dislocations: the self energy regime. Archive for Rational Mechanics and Analysis 206(3), 885–910 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dal Maso, G., Negri, M., Percivale, D.: Linearized elasticity as Γ-limit of finite elasticity. Set-Valued Analysis. An International Journal Devoted to the Theory of Multifunctions and its Applications 10(2-3), 165–183 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Davini, C., Parry, G.P.: A Complete List of Invariants for Defective Crystals. Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences 432, 341–365 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Davini, C., Parry, G.P.: Errata: A Complete List of Invariants for Defective Crystals. Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences 434, 735 (1991)

    Article  MathSciNet  Google Scholar 

  16. Dmitrieva, O., Raabe, D., Müller, S., Dondl, P.W.: Microstructure in plasticity, A comparison between theory and experiment. In: Hackl, K., Conti, S. (eds.) Analysis and Computation of Microstructure in Finite Plasticity. LNACM, vol. 78, pp. 205–218. Springer, Heidelberg (2015)

    Google Scholar 

  17. Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids 41(12), 1825–1857 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Communications on Pure and Applied Mathematics 55(11), 1461–1506 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Garroni, A., Leoni, G., Ponsiglione, M.: Gradient theory for plasticity via homogenization of discrete dislocations. Journal of the European Mathematical Society (JEMS) 12(5), 1231–1266 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Geers, M.G.D., Peerlings, R.H.J., Peletier, M.A., Scardia, L.: Asymptotic Behaviour of a Pile-Up of Infinite Walls of Edge Dislocations. Archive for Rational Mechanics and Analysis 209(2), 495–539 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hutchinson, J.W.: Plasticity at the micron scale. International Journal of Solids and Structures 37(1-2), 225–238 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jerrard, R.: Lower bounds for generalized Ginzburg-Landau functionals. SIAM Journal of Mathematical Analysis 30(4), 721–746 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kondo, K.: On the analytical and physical foundations of the theory of dislocations and yielding by the differential geometry of continua. Int. J. Eng. Sci. 2, 219–251 (1964)

    Article  MATH  Google Scholar 

  24. Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer, Heidelberg (1958)

    Book  MATH  Google Scholar 

  25. Kléman, M., Toulouse, G.: Classification of topologically stable defects in ordered media. J. Physique Lett. 38, L195–L197 (1977)

    Google Scholar 

  26. Luckhaus, S., Mugnai, L.: On a mesoscopic many-body Hamiltonian describing elastic shears and dislocations. Continuum Mechanics And Thermodynamics 22, 251–290 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Luckhaus, S., Wohlgemuth, J.: Study of a model for reference-free plasticity. arXiv.org (August. 2014)

    Google Scholar 

  28. Mermin, N.: Classification of topologically stable defects in ordered media. J. Physique Lett. 38, L195–L197 (1977)

    Google Scholar 

  29. Michel, L.: Symmetry defects and broken symmetry. Rev. Mod. Phys. 52, 617–651 (1980)

    Article  Google Scholar 

  30. Mielke, A.: Variational approaches and methods for dissipative material models with multiple scales. In: Hackl, K., Conti, S. (eds.) Analysis and Computation of Microstructure in Finite Plasticity. LNACM, vol. 78, pp. 125–156. Springer, Heidelberg (2015)

    Google Scholar 

  31. Mielke, A., Müller, S.: Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity. ZAMM. Zeitschrift für Angewandte Mathematik und Mechanik. Journal of Applied Mathematics and Mechanics 86(3), 233–250 (2006)

    Article  MATH  Google Scholar 

  32. Müller, S., Palombaro, M.: Existence of minimizers for a polyconvex energy in a crystal with dislocations. Calculus of Variations and Partial Differential Equations 31(4), 473–482 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mielke, A., Stefanelli, U.: Linearized plasticity is the evolutionary Γ-limit of finite plasticity. Journal of the European Mathematical Society (JEMS) 15(3), 923–948 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Müller, S., Scardia, L., Zeppieri, C.I.: Geometric rigidity for incompatible fields, and an application to strain gradient plasticity. Indiana University Mathematics Journal 63, 1365–1396 (2015)

    Google Scholar 

  35. Ponsiglione, M.: Elastic Energy Stored in a Crystal Induced by Screw Dislocations: From Discrete to Continuous. SIAM Journal on Mathematical Analysis 39, 449–469 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Reina, C., Conti, S.: Kinematic description of crystal plasticity in the finite kinematic framework: a micromechanical understanding of F = F e F p. Journal of the Mechanics and Physics of Solids 67, 40–61 (2014)

    Article  MathSciNet  Google Scholar 

  37. Sandier, E.: Lower bounds for the energy of unit vector fields and applications. Journal of Functional Analysis 152(2), 379–403 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sandier, E.: Erratum: Lower bounds for the energy of unit vector fields and applications. Journal of Functional Analysis 171(1), 233 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  39. Scardia, L., Peerlings, R.H.J., Peletier, M.A., Geers, M.G.D.: Mechanics of dislocation pile-ups: A unification of scaling regimes. Journal of the Mechanics and Physics of Solids 70, 42–61 (2014)

    Article  MathSciNet  Google Scholar 

  40. Sandier, E., Serfaty, S.: Improved lower bounds for Ginzburg-Landau energies via mass displacement. Analysis & PDE 4(5), 757–795 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Scala, R., van Goethem, N.: Dislocations at the continuum scale: functional setting and variational properties. Preprint, pp. 1–28 (November 2014)

    Google Scholar 

  42. Scardia, L., Zeppieri, C.I.: Line-tension model for plasticity as the Γ-limit of nonlinear dislocation energy. SIAM Journal on Mathematical Analysis 44(4), 2372–2400 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Toulouse, G., Kléman, M.: Principles of a classification of defects in ordered media. J. Physique 37, 149–151 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Müller, S., Scardia, L., Zeppieri, C.I. (2015). Gradient Theory for Geometrically Nonlinear Plasticity via the Homogenization of Dislocations. In: Conti, S., Hackl, K. (eds) Analysis and Computation of Microstructure in Finite Plasticity. Lecture Notes in Applied and Computational Mechanics, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-18242-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18242-1_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18241-4

  • Online ISBN: 978-3-319-18242-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics