Skip to main content

Building Muscle Mass: Physiology, Nutrition, and Supplementation

  • Chapter
Nutritional Supplements in Sports and Exercise

Abstract

One of the most common-sought after goals in athletic performance is attaining and maintaining muscle mass. From protein to creatine, arginine to human growth hormone, how is one to determine what really works, what is legitimate, and what is merely another gimmick in the supplement industry? Coupling the array of supplements with the unique performance needs of an athlete creates an infinite amount of possible combinations. How do you know what is the right combination for successfully building the desired amount of muscle mass, maintaining an “optimal” body composition, and (during periods when additional body mass is desired) ensuring lean mass is gained over fat mass? It is with great time, research, and a foundation laid for us by our predecessors in the field of sports nutrition that we write this chapter on muscle building and optimizing lean body mass. By the end of this chapter you should be able to:

  • Describe the muscle building process

  • Define and determine net protein balance

  • Describe how genetics play a role in muscle growth

  • Know the recommended amounts of protein for gaining muscle

  • Know the suggested protein: carbohydrate ratio for optimal muscle hypertrophy

  • Define nutrient timing and its role in muscle hypertrophy

  • Explain the difference between whey, casein, egg, soy, and vegan protein supplements

  • Explain why and when supplementing with BCAAs are important to muscle growth

  • Explain the major hormones that play a role in muscle growth

  • Explain the potential benefits and drawbacks of anabolic steroids

  • Define the role of IGF in muscle growth

  • Describe the creatine-phosphate system and why creatine is used for muscle hypertrophy

  • Explain why supplements that promote the production of nitric oxide are used by athletes

  • Explain how resistance training stimulates muscle hypertrophy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tipton K, Ferrando A. Improving muscle mass: response of muscle metabolism to exercise, nutrition and anabolic agents. Essays Biochem. 2008;44:85–98.

    Article  CAS  PubMed  Google Scholar 

  2. Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol. 1995;31(3), E514.

    Google Scholar 

  3. Phillips SM, Tipton K, Ferrando AA, Wolfe RR. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol. 1999;276(1):E118–24.

    CAS  PubMed  Google Scholar 

  4. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;36(1), E99.

    Google Scholar 

  5. Wagenmakers AJ. Tracers to investigate protein and amino acid metabolism in human subjects. Proc Nutr Soc. 1999;58(04):987–1000.

    Article  CAS  PubMed  Google Scholar 

  6. Biolo G, Tipton KD, Klein S, Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997;36(1), E122.

    Google Scholar 

  7. Hulmi JJ, Kovanen V, Selänne H, Kraemer WJ, Häkkinen K, Mero AA. Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids. 2009;37(2):297–308.

    Article  CAS  PubMed  Google Scholar 

  8. Hulmi JJ, Lockwood CM, Stout JR. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr Metab. 2010;7(51).

    Google Scholar 

  9. Tipton KD, Ferrando AA, Phillips SM, Doyle D, Wolfe RR. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol. 1999;276(4):E628–34.

    CAS  PubMed  Google Scholar 

  10. Pitkanen H, Nykanen T, Knuutinen J, Lahti K, Keinanen O, Alen M, et al. Free amino acid pool and muscle protein balance after resistance exercise. Med Sci Sports Exerc. 2003;35(5):784–92.

    Article  CAS  PubMed  Google Scholar 

  11. Trumbo P, Schlicker S, Yates AA, Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc. 2002;102(11):1621–30.

    Article  PubMed  Google Scholar 

  12. Kreider RB, Wilborn CD, Taylor L, Campbell B, Almada AL, Collins R, et al. ISSN exercise & sport nutrition review: research & recommendations. J Int Soc Sports Nutr. 2010;7(7):2–43.

    Google Scholar 

  13. Forslund AH, El-Khoury AE, Olsson RM, Sjödin AM, Hambraeus L, Young VR. Effect of protein intake and physical activity on 24-h pattern and rate of macronutrient utilization. Am J Physiol. 1999;276(5):E964–76.

    CAS  PubMed  Google Scholar 

  14. Friedman J, Lemon P. Effect of chronic endurance exercise on retention of dietary protein. Int J Sports Med. 1989;10(2):118–23.

    Article  CAS  PubMed  Google Scholar 

  15. Lamont LS, Patel DG, Kalhan SC. Leucine kinetics in endurance-trained humans. J Appl Physiol. 1990;69(1):1–6.

    CAS  PubMed  Google Scholar 

  16. Meredith C, Zackin M, Frontera W, Evans W. Dietary protein requirements and body protein metabolism in endurance-trained men. J Appl Physiol. 1989;66(6):2850–6.

    CAS  PubMed  Google Scholar 

  17. Phillips SM, Atkinson SA, Tarnopolsky MA, MacDougall J. Gender differences in leucine kinetics and nitrogen balance in endurance athletes. J Appl Physiol. 1993;75(5):2134–41.

    CAS  PubMed  Google Scholar 

  18. Lemon P. Protein and amino acid needs of the strength athlete. Int J Sport Nutr. 1991;1(2):127–45.

    CAS  PubMed  Google Scholar 

  19. Lemon P, Tarnopolsky M, MacDougall J, Atkinson S. Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. J Appl Physiol. 1992;73(2):767–75.

    CAS  PubMed  Google Scholar 

  20. Tarnopolsky M, Atkinson S, MacDougall J, Chesley A, Phillips S, Schwarcz H. Evaluation of protein requirements for trained strength athletes. J Appl Physiol. 1992;73(5):1986–95.

    CAS  PubMed  Google Scholar 

  21. Chesley A, MacDougall J, Tarnopolsky M, Atkinson S, Smith K. Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol. 1992;73:1383.

    CAS  PubMed  Google Scholar 

  22. Kreider RB. Dietary supplements and the promotion of muscle growth with resistance exercise. Sports Med. 1999;27(2):97–110.

    Article  CAS  PubMed  Google Scholar 

  23. Tarnopolsky MA, MacDougall JD, Atkinson SA. Influence of protein intake and training status on nitrogen balance and lean body mass. J Appl Physiol. 1988;64(1):187–93.

    CAS  PubMed  Google Scholar 

  24. Kreider RB, Leutholtz BC, Katch FI, Katch VL. Exercise and sport nutrition. Santa Barbara, CA: Fitness Technologies Press; 2009.

    Google Scholar 

  25. Kreider RB, Fry AC, O’Toole MLE, editors. Overtraining in sport. International conference on overtraining in sport, Jul, 1996, U Memphis, Memphis, TN, US; 1998: Human Kinetics.

    Google Scholar 

  26. Holwerda AM, van Vliet S, Trommelen J. Refining dietary protein recommendations for the athlete. J Physiol. 2013;591(12):2967–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, et al. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89(1):161–8.

    Article  CAS  PubMed  Google Scholar 

  28. Bucci L, Unlu L. Proteins and amino acid supplements in exercise and sport. Driskell L, Wolinsky I (eds). Energy-yielding macronutrients and energy metabolism in sports nutrition. Boca Raton, FL: CRC Press; 2000. pp. 191–212.

    Google Scholar 

  29. Etzel MR. Manufacture and use of dairy protein fractions. J Nutr. 2004;134(4):996S–1002.

    CAS  PubMed  Google Scholar 

  30. Ha E, Zemel MB. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (review). J Nutr Biochem. 2003;14(5):251–8.

    Article  CAS  PubMed  Google Scholar 

  31. Krissansen GW. Emerging health properties of whey proteins and their clinical implications. J Am Coll Nutr. 2007;26(6):713S–23.

    Article  CAS  PubMed  Google Scholar 

  32. Elliot TA, Cree MG, Sanford AP, Wolfe RR, Tipton KD. Milk ingestion stimulates net muscle protein synthesis following resistance exercise. Med Sci Sports Exerc. 2006;38(4):667.

    Article  CAS  PubMed  Google Scholar 

  33. Carunchia Whetstine M, Croissant A, Drake M. Characterization of dried whey protein concentrate and isolate flavor. J Dairy Sci. 2005;88(11):3826–39.

    Article  CAS  PubMed  Google Scholar 

  34. Tipton KD, Elliott TA, Cree MG, Wolf SE, Sanford AP, Wolfe RR. Ingestion of casein and whey proteins result in muscle anabolism after resistance exercise. Med Sci Sports Exerc. 2004;36:2073–81.

    Article  CAS  PubMed  Google Scholar 

  35. Mahé S, Messing B, Thuillier F, Tome D. Digestion of bovine milk proteins in patients with a high jejunostomy. Am J Clin Nutr. 1991;54(3):534–8.

    PubMed  Google Scholar 

  36. Boirie Y, Dangin M, Gachon P, Vasson M-P, Maubois J-L, Beaufrère B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci USA. 1997;94(26):14930–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Frühbeck G. Protein metabolism: slow and fast dietary proteins. Nature. 1998;391(6670):843–5.

    Article  PubMed  Google Scholar 

  38. Phillips SM, Tang JE, Moore DR. The role of milk-and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr. 2009;28(4):343–54.

    Article  CAS  PubMed  Google Scholar 

  39. Katsanos CS, Chinkes DL, Paddon-Jones D, Zhang X-J, Aarsland A, Wolfe RR. Whey protein ingestion in elderly persons results in greater muscle protein accrual than ingestion of its constituent essential amino acid content. Nutr Res. 2008;28(10):651–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol. 2006;291(2):E381–7.

    CAS  Google Scholar 

  41. Koopman R, Wagenmakers AJ, Manders RJ, Zorenc AH, Senden JM, Gorselink M, et al. Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol. 2005;288(4):E645–53.

    CAS  Google Scholar 

  42. Tipton KD, Elliott TA, Ferrando AA, Aarsland AA, Wolfe RR. Stimulation of muscle anabolism by resistance exercise and ingestion of leucine plus protein. Appl Physiol Nutr Metab. 2009;34(2):151–61.

    Article  CAS  PubMed  Google Scholar 

  43. Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol. 2001;280(2):E340–8.

    CAS  Google Scholar 

  44. Mahe S, Roos N, Benamouzig R, Davin L, Luengo C, Gagnon L, et al. Gastrojejunal kinetics and the digestion of [15 N] beta-lactoglobulin and casein in humans: the influence of the nature and quantity of the protein. Am J Clin Nutr. 1996;63(4):546–52.

    CAS  PubMed  Google Scholar 

  45. Wilborn CD, Taylor LW, Outlaw J, Williams L, Campbell B, Foster CA, et al. The effects of pre-and post-exercise whey vs. casein protein consumption on body composition and performance measures in collegiate female athletes. J Sports Sci Med. 2013;12(((1):74.

    Google Scholar 

  46. Cribb PJ, Williams AD, Carey MF, Hayes A. The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. Int J Sports Nutr Exerc Metab. 2006;16(5).

    Google Scholar 

  47. Demling RH, DeSanti L. Effect of a hypocaloric diet, increased protein intake and resistance training on lean mass gains and fat mass loss in overweight police officers. Ann Nutr Metab. 2000;44(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kerksick CM, Rasmussen CJ, Lancaster SL, Magu B, Smith P, Melton C, et al. The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J Strength Cond Res. 2006;20(3):643–53.

    PubMed  Google Scholar 

  49. Driskell JA, Wolinsky I. Energy-yielding macronutrients and energy metabolism in sports nutrition. New York: CRC Press; 1999.

    Google Scholar 

  50. Wilkinson SB, Tarnopolsky MA, MacDonald MJ, MacDonald JR, Armstrong D, Phillips SM. Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr. 2007;85(4):1031–40.

    CAS  PubMed  Google Scholar 

  51. Brown EC, DiSilvestro RA, Babaknia A, Devor ST. Soy versus whey protein bars: effects on exercise training impact on lean body mass and antioxidant status. Nutr J. 2004;3(1):22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Bos C, Metges CC, Gaudichon C, Petzke KJ, Pueyo ME, Morens C, et al. Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J Nutr. 2003;133(5):1308–15.

    CAS  PubMed  Google Scholar 

  53. Fouillet H, Mariotti F, Gaudichon C, Bos C, Tomé D. Peripheral and splanchnic metabolism of dietary nitrogen are differently affected by the protein source in humans as assessed by compartmental modeling. J Nutr. 2002;132(1):125–33.

    CAS  PubMed  Google Scholar 

  54. Kurzer MS. Hormonal effects of soy in premenopausal women and men. J Nutr. 2002;132(3):570S–3.

    PubMed  Google Scholar 

  55. Pino AM, Valladares LE, Palma MA, Mancilla AM, Yáñez M, Albala C. Dietary isoflavones affect sex hormone-binding globulin levels in postmenopausal women. J Clin Endocrinol Metab. 2000;85(8):2797–800.

    CAS  PubMed  Google Scholar 

  56. Rosenberg Zand RS, Jenkins DJ, Brown TJ, Diamandis EP. Flavonoids can block PSA production by breast and prostate cancer cell lines. Clin Chim Acta. 2002;317(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  57. Kreider R, Kleiner S. Protein supplements for athletes: need vs convenience. Your Patient Fitness. 2000;14(6):12–8.

    Google Scholar 

  58. Cox G. Special needs: the vegetarian athlete. In: Burke LM, Deakin V, editors. Clinical sports nutrition. Sydney: McGraw-Hill Book; 2000. p. 656–71.

    Google Scholar 

  59. Venderley AM, Campbell WW. Vegetarian diets. Sports Med. 2006;36(4):293–305.

    Article  PubMed  Google Scholar 

  60. Nieman DC. Physical fitness and vegetarian diets: is there a relation? Am J Clin Nutr. 1999;70(3):570 s–5s.

    CAS  Google Scholar 

  61. Barr SI, Rideout CA. Nutritional considerations for vegetarian athletes. Nutrition. 2004;20(7):696–703.

    Article  CAS  PubMed  Google Scholar 

  62. Craig WJ, Mangels AR. Position of the American Dietetic Association: vegetarian diets. J Am Diet Assoc. 2009;109(7):1266–82.

    Article  CAS  PubMed  Google Scholar 

  63. Young VR, Pellett PL. Plant proteins in relation to human protein and amino acid nutrition. Am J Clin Nutr. 1994;59(5):1203S–12.

    CAS  PubMed  Google Scholar 

  64. Maughan RJ. Creatine supplementation and exercise performance. Int J Sport Nutr. 1995;5(2):94–101.

    CAS  PubMed  Google Scholar 

  65. Beelen M, Tieland M, Gijsen AP, Vandereyt H, Kies AK, Kuipers H, et al. Coingestion of carbohydrate and protein hydrolysate stimulates muscle protein synthesis during exercise in young men, with no further increase during subsequent overnight recovery. J Nutr. 2008;138(11):2198–204.

    Article  CAS  PubMed  Google Scholar 

  66. Wolfe RR. Effects of amino acid intake on anabolic processes. Can J Appl Physiol. 2001;26(S1):S220–7.

    Article  CAS  PubMed  Google Scholar 

  67. Bolster DR, Jefferson LS, Kimball SR. Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid-and exercise-induced signalling. Proc Nutr Soc. 2004;63(02):351–6.

    Article  CAS  PubMed  Google Scholar 

  68. Hillier TA, Fryburg DA, Jahn LA, Barrett EJ. Extreme hyperinsulinemia unmasks insulin’s effect to stimulate protein synthesis in the human forearm. Am J Physiol. 1998;274(6):E1067–74.

    CAS  PubMed  Google Scholar 

  69. Kimball S, Jurasinski C, Lawrence J, Jefferson L. Insulin stimulates protein synthesis in skeletal muscle by enhancing the association of eIF-4E and eIF-4G. Am J Physiol. 1997;272(2):C754–9.

    CAS  PubMed  Google Scholar 

  70. Biolo G, Fleming RD, Wolfe R. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Investig. 1995;95(2):811.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Biolo G, Williams BD, Fleming R, Wolfe RR. Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes. 1999;48(5):949–57.

    Article  CAS  PubMed  Google Scholar 

  72. Gore DC, Wolf SE, Sanford AP, Herndon DN, Wolfe RR. Extremity hyperinsulinemia stimulates muscle protein synthesis in severely injured patients. Am J Physiol. 2004;286(4):E529–34.

    CAS  Google Scholar 

  73. Denne SC, Liechty EA, Liu Y, Brechtel G, Baron AD. Proteolysis in skeletal muscle and whole body in response to euglycemic hyperinsulinemia in normal adults. Am J Physiol. 1991;261(6 Pt 1):E809–14.

    CAS  PubMed  Google Scholar 

  74. Gelfand RA, Barrett EJ. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Investig. 1987;80(1):1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Heslin M, Newman E, Wolf R, Pisters P, Brennan M. Effect of hyperinsulinemia on whole body and skeletal muscle leucine carbon kinetics in humans. Am J Physiol. 1992;262(6):E911–8.

    CAS  PubMed  Google Scholar 

  76. Floyd JC, Fajans SS, Pek S, Thiffault CA, Knopf RF, Conn JW. Synergistic effect of essential amino acids and glucose upon insulin secretion in man. Diabetes. 1970;19(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  77. Floyd Jr JC, Fajans SS, Conn JW, Knopf RF, Rull J. Stimulation of insulin secretion by amino acids. J Clin Investig. 1966;45(9):1487.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. van Loon LJ, Kruijshoop M, Verhagen H, Saris WH, Wagenmakers AJ. Ingestion of protein hydrolysate and amino acid–carbohydrate mixtures increases postexercise plasma insulin responses in men. J Nutr. 2000;130(10):2508–13.

    PubMed  Google Scholar 

  79. van Loon LJ, Saris WH, Kruijshoop M, Wagenmakers AJ. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr. 2000;72(1):106–11.

    PubMed  Google Scholar 

  80. van Loon LJ, Saris WH, Verhagen H, Wagenmakers AJ. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr. 2000;72(1):96–105.

    PubMed  Google Scholar 

  81. Biolo G, Wolfe RR. Insulin action on protein metabolism. Bailliere Clin Endocrinol Metab. 1993;7(4):989–1005.

    Article  CAS  Google Scholar 

  82. Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR. Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc. 2003;35(3):449–55.

    Article  CAS  PubMed  Google Scholar 

  83. Roy B, Tarnopolsky M, MacDougall J, Fowles J, Yarasheski K. Effect of glucose supplement timing on protein metabolism after resistance training. J Appl Physiol. 1997;82(6):1882–8.

    CAS  PubMed  Google Scholar 

  84. Aragon AA, Schoenfeld BJ. Nutrient timing revisited: is there a post-exercise anabolic window. J Int Soc Sports Nutr. 2013;10(1):5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Staples AW, Burd NA, West D, Currie KD, Atherton PJ, Moore DR, et al. Carbohydrate does not augment exercise-induced protein accretion versus protein alone. Med Sci Sports Exerc. 2011;43(7):1154–61.

    Article  CAS  PubMed  Google Scholar 

  86. Tipton KD, Phillips SM. Protein and amino acid supplements in exercise and sport. van Loon LJC, Meeusen R (eds). Dietary protein for muscle hypertrophy. Basel, Switzerland: Karger Medical and Scientific Publishers; 2013. pp. 73–84.

    Google Scholar 

  87. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol. 2000;88(2):386–92.

    CAS  PubMed  Google Scholar 

  88. Breen L, Phillips SM. Nutrient interaction for optimal protein anabolism in resistance exercise. Curr Opin Clin Nutr Metab Care. 2012;15(3):226–32.

    Article  CAS  PubMed  Google Scholar 

  89. Yang Y, Breen L, Burd NA, Hector AJ, Churchward-Venne TA, Josse AR, et al. Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br J Nutr. 2012;108(10):1780–8.

    Article  CAS  PubMed  Google Scholar 

  90. Wilson JM, Fitschen PJ, Campbell B, Wilson GJ, Zanchi N, Taylor L, et al. International society of sports nutrition position stand: beta-hydroxy-betamethylbutyrate (HMB). J Int Soc Sports Nutr. 2013;10(1):1–14.

    Article  CAS  Google Scholar 

  91. Burd NA, West DW, Moore DR, Atherton PJ, Staples AW, Prior T, et al. Enhanced amino acid sensitivity of myofibrillar protein synthesis persists for up to 24 h after resistance exercise in young men. J Nutr. 2011;141(4):568–73.

    Article  CAS  PubMed  Google Scholar 

  92. Andersen LL, Tufekovic G, Zebis MK, Crameri RM, Verlaan G, Kjær M, et al. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. Metabolism. 2005;54(2):151–6.

    Article  CAS  PubMed  Google Scholar 

  93. Esmarck B, Andersen J, Olsen S, Richter E, Mizuno M, Kjaer M. Timing of post-exercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. Scand J Med Sci Sports. 2002;12(1):60.

    Google Scholar 

  94. Josse AR, Tang JE, Tarnopolsky MA, Phillips SM. Body composition and strength changes in women with milk and resistance exercise. Med Sci Sports Exerc. 2010;42(6):1122–30.

    CAS  PubMed  Google Scholar 

  95. Phillips SM, Hartman JW, Wilkinson SB. Dietary protein to support anabolism with resistance exercise in young men. J Am Coll Nutr. 2005;24(2):134S–9.

    Article  PubMed  Google Scholar 

  96. Poole C, Wilborn C, Taylor L, Kerksick C. The role of post-exercise nutrient administration on muscle protein synthesis and glycogen synthesis. J Sports Sci Med. 2010;9(3):354.

    PubMed Central  PubMed  Google Scholar 

  97. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, et al. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol. 2001;281(2):E197–206.

    CAS  Google Scholar 

  98. Tipton KD, Elliott TA, Cree MG, Aarsland AA, Sanford AP, Wolfe RR. Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am J Physiol. 2007;292(1):E71–6.

    CAS  Google Scholar 

  99. Kumar V, Atherton P, Smith K, Rennie MJ. Human muscle protein synthesis and breakdown during and after exercise. J Appl Physiol. 2009;106(6):2026–39.

    Article  CAS  PubMed  Google Scholar 

  100. Zawadzki K, Yaspelkis B, Ivy J. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992;72(5):1854–9.

    CAS  PubMed  Google Scholar 

  101. Greenhaff PL, Karagounis L, Peirce N, Simpson EJ, Hazell M, Layfield R, et al. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol. 2008;295(3):E595–604.

    CAS  Google Scholar 

  102. Rennie MJ, Bohé J, Smith K, Wackerhage H, Greenhaff P. Branched-chain amino acids as fuels and anabolic signals in human muscle. J Nutr. 2006;136(1):264S–8.

    CAS  PubMed  Google Scholar 

  103. Power O, Hallihan A, Jakeman P. Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino Acids. 2009;37(2):333–9.

    Article  CAS  PubMed  Google Scholar 

  104. Levenhagen DK, Gresham JD, Carlson MG, Maron DJ, Borel MJ, Flakoll PJ. Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol. 2001;280(6):E982–93.

    CAS  Google Scholar 

  105. Staples AW, Burd NA, West D, Currie KD, Atherton PJ, Moore DR, et al. Carbohydrate does not augment exercise-induced protein accretion versus protein alone. Med Sci Sports Exerc. 2011;43(7):1154–61.

    Article  CAS  PubMed  Google Scholar 

  106. Kreider RB. Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem. 2003;244(1–2):89–94.

    Article  CAS  PubMed  Google Scholar 

  107. Chromiak JA, Antonio J. Use of amino acids as growth hormone-releasing agents by athletes. Nutrition. 2002;18(7):657–61.

    Article  CAS  PubMed  Google Scholar 

  108. Kreider RB, Leutholtz BC, Greenwood M. Creatine. Wolinsky I, Driskel J (eds). Nutritional ergogenic aids. Boca Raton, FL: CRC Press; 2004. pp. 81–104.

    Google Scholar 

  109. Green A, Hultman E, Macdonald I, Sewell D, Greenhaff P. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol. 1996;271(5):E821–6.

    CAS  PubMed  Google Scholar 

  110. Greenhaff P, editor. Muscle creatine loading in humans: procedures and functional and metabolic effects. 6th international conference on Guanidino compounds in biology and medicine. Cincinnati, OH; 2001.

    Google Scholar 

  111. Steenge G, Simpson E, Greenhaff P. Protein-and carbohydrate-induced augmentation of whole body creatine retention in humans. J Appl Physiol. 2000;89(3):1165–71.

    CAS  PubMed  Google Scholar 

  112. Hultman E, Soderlund K, Timmons J, Cederblad G, Greenhaff P. Muscle creatine loading in men. J Appl Physiol. 1996;81(1):232–7.

    CAS  PubMed  Google Scholar 

  113. Burke DG, Smith-Palmer T, Holt LE, Head B, Chilibeck PD. The effect of 7 days of creatine supplementation on 24-hour urinary creatine excretion. J Strength Cond Res. 2001;15(1):59–62.

    CAS  PubMed  Google Scholar 

  114. Williams MH, Kreider RB, Branch JD. Creatine: the power supplement. Champaign: Human Kinetics; 1999.

    Google Scholar 

  115. Kreider RB, Ferreira M, Wilson M, Grindstaff P, Plisk S, Reinardy J, et al. Effects of creatine supplementation on body composition, strength, and sprint performance. Med Sci Sports Exerc. 1998;30:73–82.

    Article  CAS  PubMed  Google Scholar 

  116. Earnest CP, Snell P, Rodriguez R, Almada A, Mitchell T. The effect of creatine monohydrate ingestion on anaerobic power indices, muscular strength and body composition. Acta Physiol Scand. 1995;153(2):207.

    Article  PubMed  Google Scholar 

  117. Antonio J, Stout JR. Sports supplements. Philadelphia: Lippincott Williams & Wilkins; 2001.

    Google Scholar 

  118. Kreider RB, Klesges R, Harmon K, Grindstaff P, Ramsey L, Bullen D, et al. Effects of ingesting supplements designed to promote lean tissue accretion on body composition during resistance training. Int J Sport Nutr. 1996;6:234–46.

    CAS  PubMed  Google Scholar 

  119. Stout J, Eckerson J, Noonan D, Moore G, Cullen D. Effects of 8 weeks of creatine supplementation on exercise performance and fat-free weight in football players during training. Nutr Res. 1999;19(2):217–25.

    Article  CAS  Google Scholar 

  120. Stout J, Eckerson J, Noonan D, Moore G, Cullen D. The effects of a supplement designed to augment creatine uptake on exercise performance and fat-free mass in football players 1429. Med Sci Sports Exerc. 1997;29(5):251.

    Article  Google Scholar 

  121. Vandenberghe K, Goris M, Van Hecke P, Van Leemputte M, Vangerven L, Hespel P. Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol. 1997;83(6):2055–63.

    CAS  PubMed  Google Scholar 

  122. Mihic S, MacDonald JR, McKenzie S, Tarnopolsky MA. Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Med Sci Sports Exerc. 2000;32(2):291–6.

    Article  CAS  PubMed  Google Scholar 

  123. Bessman S, Savabi F. The role of the phosphocreatine energy shuttle in exercise and muscle hypertrophy. San Diego, CA: Academic; 1988. p. 185–98.

    Google Scholar 

  124. Volek JS, Duncan ND, Mazzetti SA, Staron RS, Putukian M, Gomez A, et al. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med Sci Sports Exerc. 1999;31:1147–56.

    Article  CAS  PubMed  Google Scholar 

  125. Willoughby DS, Rosene J. Effects of oral creatine and resistance training on myosin heavy chain expression. Med Sci Sports Exerc. 2001;33(10):1674–81.

    Article  CAS  PubMed  Google Scholar 

  126. Willoughby DS, Rosene JM. Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med Sci Sports Exerc. 2003;35(6):923–9.

    Article  CAS  PubMed  Google Scholar 

  127. Lowe DA, Lund T, Alway SE. Hypertrophy-stimulated myogenic regulatory factor mRNA increases are attenuated in fast muscle of aged quails. Am J Physiol. 1998;275(1):C155–62.

    CAS  PubMed  Google Scholar 

  128. Schultz E, McCormick KM. Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol. 1994;Volume 123:p. 213–57. Springer.

    PubMed  Google Scholar 

  129. Hawke TJ. Muscle stem cells and exercise training. Exerc Sport Sci Rev. 2005;33(2):63–8.

    Article  PubMed  Google Scholar 

  130. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, et al. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. J Physiol. 2006;573(2):525–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Vingren JL, Kraemer WJ, Ratamess NA, Anderson JM, Volek JS, Maresh CM. Testosterone physiology in resistance exercise and training. Sports Med. 2010;40(12):1037–53.

    Article  PubMed  Google Scholar 

  132. Antonio J, Stout JR. Supplements for strength-power athletes. Champaign: Human Kinetics; 2002.

    Google Scholar 

  133. Lukaski HC. Magnesium, zinc, and chromium nutriture and physical activity. Am J Clin Nutr. 2000;72(2):585 s–93s.

    CAS  Google Scholar 

  134. Shils ME, Shike M. Modern nutrition in health and disease. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  135. Buchman AL, Keen C, Commisso J, Killip D, Ou C-N, Rognerud CL, et al. The effect of a marathon run on plasma and urine mineral and metal concentrations. J Am Coll Nutr. 1998;17(2):124–7.

    Article  CAS  PubMed  Google Scholar 

  136. Kikukawa A, Kobayashi A. Changes in urinary zinc and copper with strenuous physical exercise. Aviat Space Environ Med. 2002;73(10):991–5.

    CAS  PubMed  Google Scholar 

  137. Lukaski HC. Micronutrients (magnesium, zinc, and copper): are mineral supplements needed for athletes? Int J Sport Nutr. 1995;5:S74-S.

    Google Scholar 

  138. Nielsen FH, Lukaski HC. Update on the relationship between magnesium and exercise. Magnes Res. 2006;19(3):180–9.

    CAS  PubMed  Google Scholar 

  139. Brilla L, Conte V. Effects of a novel zinc-magnesium formulation on hormones and strength. J Exerc Physiol Online. 2000;3(4).

    Google Scholar 

  140. Koehler K, Parr M, Geyer H, Mester J, Schänzer W. Serum testosterone and urinary excretion of steroid hormone metabolites after administration of a high-dose zinc supplement. Eur J Clin Nutr. 2009;63(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  141. Wilborn CD, Kerksick CM, Campbell BI, Taylor LW, Marcello BM, Rasmussen CJ, et al. Effects of zinc magnesium aspartate (ZMA) supplementation on training adaptations and markers of anabolism and catabolism. J Int Soc Sports Nutr. 2004;1(2):12–20.

    Article  PubMed Central  PubMed  Google Scholar 

  142. Qureshi A, Naughton DP, Petroczi A. A systematic review on the herbal extract Tribulus terrestris and the roots of its putative aphrodisiac and performance enhancing effect. J Diet Suppl. 2014;11(1):64–79.

    Article  PubMed  Google Scholar 

  143. Neychev VK, Mitev VI. The aphrodisiac herb Tribulus terrestris does not influence the androgen production in young men. J Ethnopharmacol. 2005;101(1):319–23.

    Article  CAS  PubMed  Google Scholar 

  144. Rogerson S, Riches CJ, Jennings C, Weatherby RP, Meir RA, Marshall-Gradisnik SM. The effect of five weeks of Tribulus terrestris supplementation on muscle strength and body composition during preseason training in elite rugby league players. J Strength Cond Res. 2007;21(2):348–53.

    PubMed  Google Scholar 

  145. West D, Phillips SM. Anabolic processes in human skeletal muscle: restoring the identities of growth hormone and testosterone. Phys Sports Med. 2010;38(3):97–104.

    Article  Google Scholar 

  146. Ahmad AM, Hopkins MT, Thomas J, Ibrahim H, Fraser WD, Vora JP. Body composition and quality of life in adults with growth hormone deficiency; effects of low-dose growth hormone replacement. Clin Endocrinol. 2001;54(6):709–17.

    Google Scholar 

  147. Alba-Roth J, Müller OA, Schopohl J, Werder KV. Arginine stimulates growth hormone secretion by suppressing endogenous somatostatin secretion. J Clin Endocrinol Metab. 1988;67(6):1186–9.

    Google Scholar 

  148. Fernholm R, Bramnert M, Hägg E, Hilding A, Baylink DJ, Mohan S, et al. Growth hormone replacement therapy improves body composition and increases bone metabolism in elderly patients with pituitary disease. J Clin Endocrinol Metab. 2000;85(11):4104–12.

    CAS  PubMed  Google Scholar 

  149. Merimee TJ, Rabinowitz D, Riggs L, Burgess JA, Rimoin DL, McKusick VA. Plasma growth hormone after arginine infusion: clinical experiences. N Engl J Med. 1967;276(8):434–9.

    Article  CAS  PubMed  Google Scholar 

  150. Thorén M, Hilding A, Baxter RC, Degerblad M, Wivall-Helleryd I-L, Hall K. Serum insulin-like growth factor I (IGF-I), IGF-binding protein-1 and-3, and the acid-labile subunit as serum markers of body composition during growth hormone (GH) therapy in adults with GH deficiency 1. J Clin Endocrinol Metab. 1997;82(1):223–8.

    PubMed  Google Scholar 

  151. Brennan BP, Kanayama G, Hudson JI, Pope Jr HG. Human growth hormone abuse in male weightlifters. Am J Addict. 2011;20(1):9–13.

    Article  PubMed Central  PubMed  Google Scholar 

  152. Schaefer A, Piquard F, Geny B, Doutreleau S, Lampert E, Mettauer B, et al. L-arginine reduces exercise-induced increase in plasma lactate and ammonia. Int J Sports Med. 2002;23(06):403–7.

    Article  CAS  PubMed  Google Scholar 

  153. Zajac A, Poprzecki S, Zebrowska A, Chalimoniuk M, Langfort J. Arginine and ornithine supplementation increases growth hormone and insulin-like growth factor-1 serum levels after heavy-resistance exercise in strength-trained athletes. J Strength Cond Res. 2010;24(4):1082–90.

    Article  PubMed  Google Scholar 

  154. Isidori A, Lo Monaco A, Cappa M. A study of growth hormone release in man after oral administration of amino acids. Curr Med Res Opin. 1981;7(7):475–81.

    Article  CAS  PubMed  Google Scholar 

  155. Besset A, Bonardet A, Rondouin G, Descomps B, Passouant P. Increase in sleep related GH and Prl secretion after chronic arginine aspartate administration in man. Acta Endocrinol (Copenh). 1982;99(1):18–23.

    CAS  Google Scholar 

  156. Colombani P, Bitzi R, Frey-Rindova P, Frey W, Arnold M, Langhans W, et al. Chronic arginine aspartate supplementation in runners reduces total plasma amino acid level at rest and during a marathon run. Eur J Nutr. 1999;38(6):263–70.

    Article  CAS  PubMed  Google Scholar 

  157. Alvares TS, Conte-Junior CA, Silva JT, Paschoalin VMF. L-arginine does not improve biochemical and hormonal response in trained runners after 4 weeks of supplementation. Nutr Res. 2014;34(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  158. Corpas E, Blackman MR, Roberson R, Scholfield D, Harman SM. Oral arginine-lysine does not increase growth hormone or insulin-like growth factor-I in old men. J Gerontol. 1993;48(4):M128-M.

    Article  Google Scholar 

  159. da Silva DVT, Conte-Junior CA, Paschoalin VMF, da Silveira AT. Hormonal response to L-arginine supplementation in physically active individuals. Food Nutr Res. 2014;58.

    Google Scholar 

  160. Forbes SC, Harber V, Bell GJ. Oral L-arginine prior to resistance exercise blunts growth hormone in strength trained males. Int J Sport Nutr Exerc Metab. 2013;24(2):236–44.

    Article  PubMed  CAS  Google Scholar 

  161. Forbes SC, Harber V, Bell GJ. The acute effects of L-arginine on hormonal and metabolic responses during submaximal exercise in trained cyclists. Int J Sports Nutr Exerc Metab. 2013;23:369–77.

    CAS  Google Scholar 

  162. Nassar E, Mulligan C, Taylor L, Kerksick C, Galbreath M, Greenwood M, et al. Effects of a single dose of N-Acetyl-5-methoxytryptamine (Melatonin) and resistance exercise on the growth hormone/IGF-1 axis in young males and females. J Int Soc Sports Nutr. 2007;4(1):1–13.

    Article  Google Scholar 

  163. Meeking D, Wallace J, Cuneo R, Forsling M, Russell-Jones D. Exercise-induced GH secretion is enhanced by the oral ingestion of melatonin in healthy adult male subjects. Eur J Endocrinol. 1999;141(1):22–6.

    Article  CAS  PubMed  Google Scholar 

  164. Mero AA, Vähälummukka M, Hulmi JJ, Kallio P, von Wright A. Effects of resistance exercise session after oral ingestion of melatonin on physiological and performance responses of adult men. Eur J Appl Physiol. 2006;96(6):729–39.

    Article  CAS  PubMed  Google Scholar 

  165. Laron Z. Somatomedin-1 (recombinant insulin-like growth factor-1). BioDrugs. 1999;11(1):55–70.

    Article  CAS  PubMed  Google Scholar 

  166. Laron Z. Insulin-like growth factor 1 (IGF-1): a growth hormone. Mol Pathol. 2001;54(5):311–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  167. Spangenburg EE. IGF-I isoforms and ageing skeletal muscle: an ‘unresponsive’ hypertrophy agent? J Physiol. 2003;547((1):2.

    Google Scholar 

  168. Mero A, Kähkönen J, Nykänen T, Parviainen T, Jokinen I, Takala T, et al. IGF-I, IgA, and IgG responses to bovine colostrum supplementation during training. J Appl Physiol. 2002;93(2):732–9.

    Article  CAS  PubMed  Google Scholar 

  169. Mero A, Miikkulainen H, Riski J, Pakkanen R, Aalto J, Takala T. Effects of bovine colostrum supplementation on serum IGF-I, IgG, hormone, and saliva IgA during training. J Appl Physiol. 1997;83(4):1144–51.

    CAS  PubMed  Google Scholar 

  170. Deldicque L, Louis M, Theisen D, Nielens H, Dehoux M, Thissen J-P, et al. Increased IGF mRNA in human skeletal muscle after creatine supplementation. Med Sci Sports Exerc. 2005;37(5):731–6.

    Article  CAS  PubMed  Google Scholar 

  171. Burke DG, Candow DG, Chilibeck PD, MacNeil LG, Roy BD, Tarnopolsky MA, et al. Effect of creatine supplementation and resistance-exercise training on muscle insulin-like growth factor in young adults. Int J Sport Nutr. 2008;18(4):389.

    CAS  Google Scholar 

  172. Ameri P, Giusti A, Boschetti M, Bovio M, Teti C, Leoncini G, et al. Vitamin D increases circulating IGF1 in adults: potential implication for the treatment of GH deficiency. Eur J Endocrinol. 2013;169(6):767–72.

    Article  CAS  PubMed  Google Scholar 

  173. Fabian C. The what, why and how of aromatase inhibitors: hormonal agents for treatment and prevention of breast cancer. Int J Clin Pract. 2007;61(12):2051–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  174. Fryburg DA, Barrett EJ, Louard RJ, Gelfand RA. Effect of starvation on human muscle protein metabolism and its response to insulin. Am J Physiol. 1990;259(4):E477–82.

    CAS  PubMed  Google Scholar 

  175. Curthoys NP, Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr. 1995;15(1):133–59.

    Article  CAS  PubMed  Google Scholar 

  176. Blomstrand E, Essén-Gustavsson B. Changes in amino acid concentration in plasma and type I and type II fibres during resistance exercise and recovery in human subjects. Amino Acids. 2009;37(4):629–36.

    Article  CAS  PubMed  Google Scholar 

  177. Gleeson M, Walsh N, Blannin A, Robson P, Cook L, Donnelly AE, et al. The effect of severe eccentric exercise-induced muscle damage on plasma elastase, glutamine and zinc concentrations. Eur J Appl Physiol Occup Physiol. 1998;77(6):543–6.

    Article  CAS  PubMed  Google Scholar 

  178. Street B, Byrne C, Eston R. Glutamine supplementation in recovery from eccentric exercise attenuates strength loss and muscle soreness. J Exerc Sci Fitness. 2011;9(2):116–22.

    Article  Google Scholar 

  179. Jówko E, Ostaszewski P, Jank M, Sacharuk J, Zieniewicz A, Wilczak J, et al. Creatine and β-hydroxy-β-methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program. Nutrition. 2001;17(7):558–66.

    Article  PubMed  Google Scholar 

  180. Knitter A, Panton L, Rathmacher J, Petersen A, Sharp R. Effects of β-hydroxy-β-methylbutyrate on muscle damage after a prolonged run. J Appl Physiol. 2000;89(4):1340–4.

    CAS  PubMed  Google Scholar 

  181. Pellegrinotti I, Cesar MC, Rochelle M, Rochelle SA, Borin J, Rosa R, et al. Effect of oral glutamine supplementation on exercise performance in endurance swimmers. Pensar a Prática. 2012;15(2):317–30.

    Article  Google Scholar 

  182. Ramallo B, Charro MA, Foschini D, Prestes J, Pithon-Curi T, Evangelista A, et al. ACUTE glutamine supplementation does not affect muscle damage profile after resistance training. Int J Sports Sci. 2013;3(1):4–9.

    Google Scholar 

  183. Nissen S, Sharp R, Ray M, Rathmacher J, Rice D, Fuller J, et al. Effect of leucine metabolite β-hydroxy-β-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol. 1996;81(5):2095–104.

    CAS  PubMed  Google Scholar 

  184. Davis G, Lowery RP, Duncan N, Sikorski E, Rathmacher J, Baier S, et al. The effects of beta-hydoxy-beta-methylbutyrate free acid supplementation on muscle damage, hormonal status, and performance following a high volume 2-week overreaching cycle. J Int Soc Sports Nutr. 2012;9 Suppl 1:4.

    Article  Google Scholar 

  185. Van Someren KA, Edwards AJ, Howatson G. Supplementation with B-hydroxy-B-methylbutyrate (HMB) and a-ketoisocaproic acid (KIC) reduces signs and symptoms of exercise-induced muscle damage in man. Int J Sports Nutr Exerc Metab. 2005;15(4).

    Google Scholar 

  186. Lowery RP, Joy JM, Rathmacher JA, Baier SM, Fuller Jr J, Shelley M, et al. Interaction of beta-hydroxy-beta-methylbutyrate free acid (HMB-FA) and adenosine triphosphate (ATP) on muscle mass, strength, and power in resistance trained individuals. J Strength Cond Res. 2014.

    Google Scholar 

  187. Dunsmore K, Lowery RP, Duncan N, Davis G, Rathmacher J, Baier S, et al. Effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid Gel supplementation on muscle mass, strength, and power in resistance trained individuals. J Int Soc Sports Nutr. 2012;9 Suppl 1:5.

    Article  Google Scholar 

  188. Lowery RP, Joy J, Rathmacher JA, Baier SM, Fuller JC, Jäger R, et al. Effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid, adenosine triphosphate, or a combination on muscle mass, strength, and power in resistance trained individuals. J Int Soc Sports Nutr. 2013;10 Suppl 1:17.

    Article  Google Scholar 

  189. Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev. 2001;81(1):209–37.

    CAS  PubMed  Google Scholar 

  190. KINGWELL BA. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB J. 2000;14(12):1685–96.

    Article  CAS  PubMed  Google Scholar 

  191. Moncada S, Higgs E, Hodson H, Knowles R, López-Jaramillo P, McCall T, et al. The L-arginine: nitric oxide pathway. J Cardiovasc Pharmacol. 1991;17:S1.

    Article  CAS  Google Scholar 

  192. Campbell B, Roberts M, Kerksick C, Wilborn C, Marcello B, Taylor L, et al. Pharmacokinetics, safety, and effects on exercise performance of L-arginine α-ketoglutarate in trained adult men. Nutrition. 2006;22(9):872–81.

    Article  CAS  PubMed  Google Scholar 

  193. Reid J, Skelton G, Clark M, Boucher A, Willoughby DS. Effects of 7 days of arginine-alpha-ketoglutarate supplementation using NO2 Platinum on brachial artery blood flow and the levels of plasma L-arginine, nitric oxide, and eNOS after resistance exercise. J Int Soc Sports Nutr. 2010;7 Suppl 1:22.

    Article  Google Scholar 

  194. Álvares TS, Conte Jr CA, Paschoalin VMF, Silva JT, Meirelles CM, Bhambhani YN, 1, et al. Acute l-arginine supplementation increases muscle blood volume but not strength performance. Appl Physiol Nutr Metab. 2012;37(1):115–26.

    Article  PubMed  CAS  Google Scholar 

  195. Willoughby DS, Boucher T, Reid J, Skelton G, Clark M. Effects of 7 days of arginine-alpha-ketoglutarate supplementation on blood flow, plasma L-arginine, nitric oxide metabolites, and asymmetric dimethyl arginine after resistance exercise. Int J Sports Nutr Exerc Metab. 2011;21(4):291.

    CAS  Google Scholar 

  196. Sureda A, Córdova A, Ferrer MD, Pérez G, Tur JA, Pons A. L-citrulline-malate influence over branched chain amino acid utilization during exercise. Eur J Appl Physiol. 2010;110(2):341–51.

    Article  CAS  PubMed  Google Scholar 

  197. Schwedhelm E, Maas R, Freese R, Jung D, Lukacs Z, Jambrecina A, et al. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism. Br J Clin Pharmacol. 2008;65(1):51–9.

    Google Scholar 

  198. Ochiai M, Hayashi T, Morita M, Ina K, Maeda M, Watanabe F, et al. Short-term effects of l-citrulline supplementation on arterial stiffness in middle-aged men. Int J Cardiol. 2012;155(2):257–61.

    Article  PubMed  Google Scholar 

  199. Hecker M, Sessa WC, Harris HJ, Anggård E, Vane JR. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci USA. 1990;87(21):8612–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Takeda K, Machida M, Kohara A, Omi N, Takemasa T. Effects of citrulline supplementation on fatigue and exercise performance in mice. J Nutr Sci Vitaminol. 2011;57(3):246–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Levers PhD, CSCS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Levers, K., Vargo, K. (2015). Building Muscle Mass: Physiology, Nutrition, and Supplementation. In: Greenwood, M., Cooke, M., Ziegenfuss, T., Kalman, D., Antonio, J. (eds) Nutritional Supplements in Sports and Exercise. Springer, Cham. https://doi.org/10.1007/978-3-319-18230-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18230-8_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18229-2

  • Online ISBN: 978-3-319-18230-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics