Skip to main content

The Psychology of Supplementation in Sport and Exercise: Motivational Antecedents and Biobehavioral Outcomes

  • Chapter

Abstract

Research concerning the physiological and biobehavioral effects of supplements commonly used in sport or exercise settings has multiplied rapidly over the last decade. However, less attention has been directed to understanding the motivational pathways leading to sport and exercise supplement use. This chapter summarizes known usage rates for sport/fitness supplements and describes motivational theories and constructs which may be of use for understanding individuals’ use of these substances. In this respect, we contend that researchers should consider behavioral approaches, the theory of planned behavior, balance theory, achievement goal theory, social physique anxiety, and muscle dysmorphia as useful for developing an understanding of the psychological influences on supplement use. For some of the latter theories/constructs, research has already shown support for their explanatory abilities, whereas research is scant and the utility for understanding sport/exercise supplement use is yet to be determined for many of the theories. In addition to describing the motivation behind supplement use, this chapter summarizes the biobehavioral effects of a select group of supplements commonly used to improve performance, fitness, or health. Specifically, we consider psychobiological effects of caffeine, creatine, Ginkgo biloba, St. John’s wort, and omega-3 fatty acids related to enhanced arousal, improved memory and cognition, enhanced brain function and protection, and reduced depression. There is promising initial evidence for the efficacy of these compounds in producing favorable psychological outcomes, though certain shortcomings of many studies on these compounds must be taken into account before reaching definitive conclusions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dietary Supplement Health and Education Act of 1994. Public Law 103-417. 103rd Congress. Downloaded from http://www.fda.gov/opacom/laws/dshea.html on 7 May 2007.

  2. Nutrition Business Journal’s Supplement Business Report. Downloaded from http://www.nutritionbusiness.com on 7 May 2013.

  3. Radimer KL, Subar AF, Thompson FE. Nonvitamin, nonmineral dietary supplements: issues and findings from NHANES III. J Am Diet Assoc. 2000;100(4):447–54.

    Article  CAS  PubMed  Google Scholar 

  4. Perkin JE, Wilson WJ, Schuster K, Rodriguez J, Allen-Chabot A. Prevalence of non-vitamin, non-mineral supplement usage among university students. J Am Diet Assoc. 2002;102:412–4.

    Article  PubMed  Google Scholar 

  5. 2013-14 NCAA Banned Drugs. Downloaded from http://www.ncaa.org/health-and-safety/policy/2013-14-ncaa-banned-drugs on 1 May 2014.

  6. Geyer H, Parr MK, Mareck U, Reinhart U, Schrader Y, Schanzer W. Analysis of non-hormonal nutritional supplements for anabolic-androgenic steroids—results of an international study. Int J Sports Med. 2004;25:124–9.

    Article  CAS  PubMed  Google Scholar 

  7. Almeida JC, Grimsley EW. Coma from the health food store: interaction between kava and alprazolam. Ann Intern Med. 1996;125(11):940–1.

    Article  CAS  PubMed  Google Scholar 

  8. Fennell D. Determinants of supplement usage. Prev Med. 2004;39:932–9.

    Article  PubMed  Google Scholar 

  9. Egger G, Cameron-Smith D, Stanton R. The effectiveness of popular, non-prescription weight loss supplements. Med J Aust. 1999;171:604–8.

    CAS  PubMed  Google Scholar 

  10. Popkin BM, Doak C. The obesity epidemic is a worldwide phenomenon. Nutr Rev. 1998;56:106–14.

    Article  CAS  PubMed  Google Scholar 

  11. Kaufman DW, Kelly JP, Rosenberg L, Anderson TE, Mitchell AA. Recent patterns of medication use in the ambulatory adult population of the United States: the Slone Survey. JAMA. 2002;287:337–44.

    Article  PubMed  Google Scholar 

  12. Bailey RL, Gahche JJ, Lentino CV, Dwyer JT, Engel JS, Thomas PR, Betz JM, Sempos CT, Picciano MF. Dietary supplement use in the United States, 2003-2006. J Nutr. 2011;141:261–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Foote JA, Murphy SP, Wilkens LR, Hankin JH, Henderson BE, Kolonel LN. Factors associated with dietary supplement use among healthy adults of five ethnicities: the Multiethnic Cohort Study. Am J Epidemiol. 2003;157:888–97.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Harrison RA, Holt D, Pattison D, Elton PJ. Who and how many people are taking herbal supplements? A survey of 21,923 adults. Int J Vitam Nutr Res. 2004;74:183–6.

    Article  CAS  PubMed  Google Scholar 

  15. Sobal J, Marquart LF. Vitamin/mineral supplement use among athletes: a review of the literature. Int J Sport Nutr. 1994;4:320–34.

    CAS  PubMed  Google Scholar 

  16. Froiland K, Koszewski W, Hingst J, Kopecky L. Nutritional supplement use among college athletes and their sources of information. Int J Sport Nutr Exerc Metab. 2004;14:104–20.

    PubMed  Google Scholar 

  17. Scofield DE, Unruh S. Dietary supplement use among adolescent athletes in central Nebraska and their sources of information. J Strength Cond Res. 2006;20:452–5.

    PubMed  Google Scholar 

  18. Huang SH, Johnson K, Pipe AL. The use of dietary supplements and medications by Canadian athletes at the Atlanta and Sydney Olympic Games. Clin J Sport Med. 2006;16:27–33.

    Article  PubMed  Google Scholar 

  19. Nieper A. Nutritional supplement practices in UK junior national track and field athletes. Br J Sports Med. 2005;39:645–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Perko MA, Eddy JM, Bartee RT, Dunn MS. Giving new meaning to the term “Taking one for the team”: influences on use/non-use of dietary supplements among adolescent athletes. J Am Health Stud. 2000;16:99–106.

    Google Scholar 

  21. Martin G, Pear J. Behavior modification: what it is and how to do it. 6th ed. Englewood Cliffs, NJ: Prentice-Hall; 1998.

    Google Scholar 

  22. Watson JB. Psychology as the behaviorist views it. Psychol Rev. 1913;20:158–77.

    Article  Google Scholar 

  23. Moses E. An athlete’s Rx for the drug problem. Newsweek. 1988;Oct. 10:57.

    Google Scholar 

  24. Asch SE. Opinions and social pressures. Sci Am. 1955;193:31–5.

    Article  Google Scholar 

  25. Okun MA, Karoly P, Lutz R. Clarifying the contribution of subjective norm to predicting leisure-time exercise. Am J Health Behav. 2002;26:296–305.

    Article  PubMed  Google Scholar 

  26. Reno RR, Cialdini RB, Kallgren CA. The transsituational influence of norms. J Pers Soc Psychol. 1993;64:104–12.

    Article  Google Scholar 

  27. Ajzen I, Fishbein M. The influence of attitudes on behavior. In: Albarracin D, Johnson BT, Zanna MP, editors. The handbook of attitudes. Mahwah, NJ: Erlbaum; 2005. p. 173–221.

    Google Scholar 

  28. Conner M, Kirk SF, Cade JE, Barrett JH. Why do women use dietary supplements? The use of the theory of planned behaviour to explore beliefs about their use. Soc Sci Med. 2001;52:621–33.

    Article  CAS  PubMed  Google Scholar 

  29. Perloff RM. The dynamics of persuasion. Hillsdale, NJ: Lawrence Erlbaum; 1993.

    Google Scholar 

  30. Rosenthal R. The “file drawer problem” and tolerance for null results. Psychol Bull. 1979;86:638–41.

    Article  Google Scholar 

  31. Scargle JD. Publication bias: the “file-drawer” problem in scientific inference. J Sci Explor. 2000;14:91–106.

    Google Scholar 

  32. Heider F. The psychology of interpersonal relations. New York: Wiley; 1958.

    Book  Google Scholar 

  33. Ames C. Classrooms: goals, structures, and student motivation. J Educ Psychol. 1993;84:261–71.

    Article  Google Scholar 

  34. Dweck C. Motivational processes affecting learning. Am Psychol. 1986;41:1040–8.

    Article  Google Scholar 

  35. Nicholls JG. The competitive ethos and democratic education. Cambridge, MA: Harvard University Press; 1989.

    Google Scholar 

  36. Sarrazin P, Biddle S, Famose JP, Cury F, Fox K, Durand M. Goal orientations and conceptions of the nature of sport ability in children: a social cognitive approach. Br J Soc Psychol. 1996;35:399–414.

    Article  Google Scholar 

  37. Duda JL, Olson LK, Templin TJ. The relationship of task and ego orientation to sportsmanship attitudes and the perceived legitimacy of injurious acts. Res Q Exerc Sport. 1991;62:79–87.

    Article  CAS  PubMed  Google Scholar 

  38. Flegal KM, Carroll MD, Ogden CL, Johnson CL. Prevalence and trends in obesity among US adults, 1999-2000. JAMA. 2002;288:1723–7.

    Article  PubMed  Google Scholar 

  39. Owen PR, Laurel-Seller E. Weight and shape ideals: thin is dangerously in. J App Soc Psychol. 2000;30:979–90.

    Article  Google Scholar 

  40. Hart EH, Leary MR, Rejeski WJ. The measurement of social physique anxiety. J Sport Exerc Psychol. 1989;11:94–104.

    Google Scholar 

  41. Hausenblas HA, Fallon EA. Relationship among body image, exercise behavior, and exercise dependence symptoms. Int J Eat Disord. 2002;32:179–85.

    Article  PubMed  Google Scholar 

  42. Martin Ginis KA, Strong HA, Arent SM, Bray SR. The effects of threatened social evaluation of the physique on cortisol activity. Psychol Health. 2012;27:990–1007.

    Article  Google Scholar 

  43. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association; 1994.

    Google Scholar 

  44. Celio CI, Luce KH, Bryson SW, Winzelberg AJ, Cunning D, Rockwell R, Celio Doyle AA, Wilfley DE, Taylor CB. Use of diet pills and other dieting aids in a college population with high weight and shape concerns. Int J Eat Disord. 2006;39:492–7.

    Article  PubMed  Google Scholar 

  45. Pope Jr HG, Phillips KA, Olivardia R. The Adonis complex: the secret crisis of male body obsession. New York: Free; 2000.

    Google Scholar 

  46. Pope Jr HG, Katz DL, Hudson JI. Anorexia nervosa and “reverse anorexia” among 108 male bodybuilders. Compr Psychiatry. 1993;34:406–9.

    Article  PubMed  Google Scholar 

  47. Pope Jr HG, Gruber AJ, Choi P, Olivardia R, Phillips KA. Muscle dysmorphia: an underrecognized form of body dysmorphic disorder. Psychosomatics. 1997;38:548–57.

    Article  PubMed  Google Scholar 

  48. Hildebrandt T, Langenbucher J, Schlundt DG. Muscularity concerns among men: development of attitudinal and perceptual measures. Body Image. 2004;1:169–81.

    Article  PubMed  Google Scholar 

  49. Raevuori A, Keski-Rahkonen A, Bulik CM, Rose RJ, Rissanen A, Kaprio J. Muscle dissatisfaction in young adult men. Clin Pract Epidemiol Ment Health. 2006;2:6.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Chittester NI, Hausenblas HA. Correlates of drive for muscularity: the role of anthropometric measures and psychological factors. J Health Psychol. 2009;14:872–7.

    Article  PubMed  Google Scholar 

  51. Bond A, Choi PYL, Pope HG. Assessment of attentional bias and mood in users and non-users of anabolic-androgenic steroids. Drug Alchol Depend. 1995;37:241–5.

    Article  CAS  Google Scholar 

  52. Choi PY. Alarming effects of anabolic steroids. Psychologist. 1993;6:258–60.

    Google Scholar 

  53. Dalby JT. Brief anabolic steroid use and sustained behavioral reaction. Am J Psychiatry. 1992;149:271–2.

    CAS  PubMed  Google Scholar 

  54. Pope HG, Katz DL. Psychiatric and medical effects of anabolic-androgenic steroid use. Arch Gen Psychiatry. 1994;51:375–82.

    Article  CAS  PubMed  Google Scholar 

  55. Su T, Pagliaro M, Schmidt PJ, Pickar D, Wolkowitz O, Rubinow DR. Neuropsychiatric effects of anabolic steroid in male normal volunteers. JAMA. 1993;269:2760–4.

    Article  CAS  PubMed  Google Scholar 

  56. O’Connor DB, Archer J, Hair WM, Wu FCW. Exogenous testosterone, aggression, and mood in eugonadal and hypogonadal men. Physiol Behav. 2002;75:557–66.

    Article  PubMed  Google Scholar 

  57. Pope HG, Kouri EM, Hudson JI. Effects of supraphysiological doses of testosterone on mood and aggression in normal men. Arch Gen Psychiatry. 2000;57:133–40.

    Article  CAS  PubMed  Google Scholar 

  58. Tricker R, Casaburi R, Storer TW, Clevenger B, Berman N, Shirazi A, Bhasin S. The effects of supraphysiological doses of testosterone on angry behavior in healthy eugonadal men: a clinical research center study. J Clin Endocrinol Metab. 1996;81:3754–8.

    CAS  PubMed  Google Scholar 

  59. Ernst E. The risk-benefit profile of commonly used herbal therapies: Ginkgo, St. John’s Wort, ginseng, echinacea, saw palmetto, and Kava. Ann Intern Med. 2002;136:42–53.

    Article  PubMed  Google Scholar 

  60. Kruk B, Chmura J, Krzeminski K, Ziemba AW, Nazar K, Pekkarinen H, Kaciuba-Uscilko H. Influence of caffeine, cold and exercise on multiple choice reaction time. Psychopharmacology (Berl). 2001;157:197–201.

    Article  CAS  Google Scholar 

  61. Sinclair CJ, Geiger JD. Caffeine use in sports: a pharmacological review. J Sports Med Phys Fitness. 2000;40:71–9.

    CAS  PubMed  Google Scholar 

  62. Doyle T, Arent SM, Lutz RS. Dose-response effects of caffeine on performance in college fencers. J Strength Cond Res. 2006;20, e41.

    Google Scholar 

  63. Kenemans JL, Lorist MM. Caffeine and selective visual processing. Pharmacol Biochem Behav. 1995;52:461–71.

    Article  CAS  PubMed  Google Scholar 

  64. Rees K, Allen D, Lader M. The influences of age and caffeine on psychomotor and cognitive function. Psychopharmacology. 1999;145:181–8.

    Article  CAS  PubMed  Google Scholar 

  65. Fine BJ, Kobrick L, Lieberman HR, Marlowe B, Riley RH, Tharion WJ. Effects of caffeine or diphenhydramine on visual vigilance. Psychopharmacology (Berl). 1994;114:233–8.

    Article  CAS  Google Scholar 

  66. Koelega HS. Stimulant drugs and vigilance performance: a review. Psychopharmacology (Berl). 1993;111:1–16.

    Article  CAS  Google Scholar 

  67. Reyner LA, Horne JA. Early morning driver sleepiness: effectiveness of 200 mg caffeine. Psychophysiology. 2000;37:251–6.

    Article  CAS  PubMed  Google Scholar 

  68. Lorist MM, Snel J, Kok A, Mulder G. Influence of caffeine on selective attention in well-rested and fatigued subjects. Psychophysiology. 1994;31:525–34.

    Article  CAS  PubMed  Google Scholar 

  69. Patat A, Rosenzwieg P, Enslen M, Trocherie S, Miget N, Bozon MC, Allain H, Gandon JM. Effects of a new slow release formulation of caffeine on EEG, psychomotor and cognitive functions in sleep deprived subjects. Hum Psychopharmacol Clin Exp. 2000;15:153–70.

    Article  CAS  Google Scholar 

  70. Smith A. Effects of repeated doses of caffeine on mood and performance of alert and fatigued volunteers. J Psychopharmacol. 2005;19:620–6.

    Article  CAS  PubMed  Google Scholar 

  71. Lieberman HR, Tharion WJ, Shukitt-Hale B, Speckman KL, Tulley R. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Psychopharmacology (Berl). 2002;164:250–61.

    Article  CAS  Google Scholar 

  72. Bovim G, Naess P, Helle J, Sand T. Caffeine influence on the motor steadiness battery in neuropsychological tests. J Clin Exp Neuropsychol. 1995;17:472–6.

    Article  CAS  PubMed  Google Scholar 

  73. Loke WH, Hinrichs JV, Ghoneim MM. Caffeine and diazepam: separate and combined effects on mood, memory, and psychomotor performance. Psychopharmacology (Berl). 1985;87:344–50.

    Article  CAS  Google Scholar 

  74. Tikuisis P, Keefe AA, McLellan TM, Kamimori G. Caffeine restores engagement speed but not shooting precision following 22 h of active wakefulness. Aviat Space Environ Med. 2004;75:771–6.

    PubMed  Google Scholar 

  75. Gillingham RL, Keefe AA, Tikuisis P. Acute caffeine intake before and after fatiguing exercise improves target shooting engagement time. Aviat Space Environ Med. 2004;75:865–71.

    PubMed  Google Scholar 

  76. Ferrauti A, Weber K, Struder HK. Metabolic and ergogenic effects of carbohydrate and caffeine beverages in tennis. J Sports Med Phys Fitness. 1997;37:258–66.

    CAS  PubMed  Google Scholar 

  77. Hogervorst E, Bandelow S, Schmitt J, Jentjens R, Oliveira M, Allgrove J, Carter T, Gleeson M. Caffeine improves physical and cognitive performance during exhaustive exercise. Med Sci Sports Exerc. 2008;40:1841–51.

    Article  CAS  PubMed  Google Scholar 

  78. Ruijter J, Lorist LM, Snel J, De Ruiter M. The influence of caffeine on sustained attention: an ERP study. Pharmacol Biochem Behav. 2000;66:29–37.

    Article  CAS  PubMed  Google Scholar 

  79. Huang Z-L, Qu W-M, Eguchi N, et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci. 2005;8:858–9.

    Article  CAS  PubMed  Google Scholar 

  80. Ross GW, Abbott RD, Petrovich H, et al. Relationship between caffeine intake and Parkinson’s disease. JAMA. 2000;283:2674–9.

    Article  CAS  PubMed  Google Scholar 

  81. Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci. 1997;20:482–7.

    Article  PubMed  Google Scholar 

  82. Garrett BE, Griffiths RR. The role of dopamine in the behavioral effects of caffeine in animals and humans. Pharmacol Biochem Behav. 1997;57:533–41.

    Article  CAS  PubMed  Google Scholar 

  83. Schwarzschild MA, Chen J-F, Ascherio A. Caffeinated clues and the promise of adenosine A2A antagonists in PD. Neurology. 2002;58:1154–60.

    Article  CAS  PubMed  Google Scholar 

  84. Kitagawa M, Houzen H, Tashiro K. Effects of caffeine on the freezing of gait in Parkinson’s disease. Mov Disord. 2007;22:710–2.

    Article  PubMed  Google Scholar 

  85. Gilbert DG, Dibb WD, Plath LC, Hiyane SG. Effects of nicotine and caffeine, separately and in combination, on EEG topography, mood, heart rate, cortisol, and vigilance. Psychophysiology. 2000;37:583–95.

    Article  CAS  PubMed  Google Scholar 

  86. Lovallo WR, al’Absi M, Blick K, et al. Stress-like adrenocorticotropin responses to caffeine in young healthy men. Pharmacol Biochem Behav. 1996;55:365–9.

    Article  CAS  PubMed  Google Scholar 

  87. al’Absi M, Lovallo WR, Sung BH, et al. Persistent adrenocortical sensitivity to caffeine in borderline hypertensive men. FASEB J. 1993;7:A552.

    Google Scholar 

  88. al’Absi M, Lovallo WR, McKey B, Sung BH, Whitsett TL, Wilson MF. Hypothalamic-pituitary-adrenocortical responses to psychological stress and caffeine in men at high and low risk for hypertension. Psychosom Med. 1998;60:521–7.

    Article  PubMed  Google Scholar 

  89. Blanchard J, Sawers SJA. Comparative pharmacokinetics of caffeine in young and elderly men. J Pharmacokinet Biopharm. 1983;11:109–26.

    Article  CAS  PubMed  Google Scholar 

  90. Jacobson BH, Thurman-Lacey SR. Effect of caffeine on motor performance by caffeine-naïve and -familiar subjects. Percept Mot Skills. 1992;74:151–7.

    Article  CAS  PubMed  Google Scholar 

  91. Mikalsen A, Bertelsen B, Flaten MA. Effects of caffeine, caffeine-associated stimuli, and caffeine-related information on physiological and psychological arousal. Psychopharmacology (Berl). 2001;157:373–80.

    Article  CAS  Google Scholar 

  92. Wyss M, Schulze A. Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience. 2002;112:243–60.

    Article  CAS  PubMed  Google Scholar 

  93. Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Atlanta, GA: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2010.

    Google Scholar 

  94. Gilchrist J, Thomas KE, Xu L, McGuire LC, Coronado VG. Nonfatal sports and recreation related traumatic brain injuries among children and adolescents treated in emergency departments in the United States, 2001-2009. MMWR. 2011;60:1337–42.

    Google Scholar 

  95. Sullivan PG, Geiger JD, Mattson MP, Scheff SW. Dietary supplement creatine protects against traumatic brain injury. Ann Neurol. 2000;48:723–9.

    Article  CAS  PubMed  Google Scholar 

  96. Klivenyi P, Ferrante RJ, Matthews RT, et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med. 1999;5:347–50.

    Article  CAS  PubMed  Google Scholar 

  97. Klivenyi P, Calingasan NY, Starkov A, et al. Neuroprotective mechanisms of creatine occur in the absence of mitochondrial creatine kinase. Neurobiol Dis. 2004;15:610–7.

    Article  CAS  PubMed  Google Scholar 

  98. Rae C, Digney AL, McEwan SR, Bates TC. Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial. Proc R Soc Lond [Biol]. 2003;270:2147–50.

    Article  CAS  Google Scholar 

  99. Watanabe A, Kato N, Kato T. Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neurosci Res. 2002;42(4):279–85.

    Article  CAS  PubMed  Google Scholar 

  100. Jacobus WE, Diffley DM. Creatine kinase of heart mitochondria: control of oxidative phosphorylation by the extramitochondrial concentrations of creatine and phosphocreatine. J Biol Chem. 1986;261:16579–83.

    CAS  PubMed  Google Scholar 

  101. Sakellaris GS, Partalis NI, Nasis GD, Kotsiou ME, Tamiolaki MD, Bouloukaki EH, Evangeliou AN. Outcome of traumatic dysarthria and lingual problems of understanding with creatine administration. An open label randomized pilot study. J Trauma Treat. 2012;1:120.

    Article  Google Scholar 

  102. Ferrante RJ, Andreassen OA, Jenkins BG, et al. Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci. 2000;20:4389–97.

    CAS  PubMed  Google Scholar 

  103. Mangiarini L, Sathasivam K, Seller M, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87:493–506.

    Article  CAS  PubMed  Google Scholar 

  104. Matthews RT, Yang L, Jenkins BG, et al. Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci. 1998;18:156–63.

    CAS  PubMed  Google Scholar 

  105. Verbessem P, Lemiere J, Eijnde BO, et al. Creatine supplementation in Huntington’s disease: a placebo-controlled pilot trial. Neurology. 2003;61:925–30.

    Article  CAS  PubMed  Google Scholar 

  106. Mahady GB. Ginkgo biloba: a review of quality, safety, and efficacy. Nutr Clin Care. 2001;4:140–7.

    Article  Google Scholar 

  107. Kleijnen J, Knipschild P. Ginkgo biloba for cerebral insufficiency. Br J Clin Pharmacol. 1992;34:352–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Lingaerde O, Foreland AR, Magnusson A. Can winter depression be prevented by Ginkgo biloba extract? A placebo-controlled trial. Acta Psychiatr Scand. 1999;100:62–6.

    Article  CAS  PubMed  Google Scholar 

  109. Hopfenmüller W. Evidence for a therapeutic effect of Ginkgo biloba special extract: meta-analysis of 11 clinical studies in patients with cerebrovascular insufficiency in old age. Arzneimittelforschung. 1994;44:1005–13.

    PubMed  Google Scholar 

  110. Oken BS, Storzbach DM, Kaye JA. The efficacy of Ginkgo biloba on cognitive function in Alzheimer’s disease. Arch Neurol. 1998;55:1409–15.

    Article  CAS  PubMed  Google Scholar 

  111. Birks J, Grimly Evans J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev. 2007;(2):CD003120.

    Google Scholar 

  112. Scholey AB, Kennedy DO. Acute, dose-dependent cognitive effects of Ginkgo biloba, Panax ginseng and their combination in healthy young volunteers: differential interactions with cognitive demand. Hum Psychopharmacol Clin Exp. 2002;17:35–44.

    Article  Google Scholar 

  113. Gertz H-J, Kiefer M. Review about Ginkgo biloba special extract EGb 761 (Ginkgo). Curr Pharm Des. 2004;10:261–4.

    Article  CAS  PubMed  Google Scholar 

  114. Butterfield DA, Howard B, Yatin S, et al. Elevated oxidative stress in models of normal brain aging and Alzheimer’s disease. Life Sci. 1999;65:1883–92.

    Article  CAS  PubMed  Google Scholar 

  115. Vining Smith J, Luo Y. Elevation of oxidative free radicals in Alzheimer’s disease models can be attenuated by Ginkgo biloba extract EGb 761. J Alzheimers Dis. 2003;5:287–300.

    Google Scholar 

  116. Tchantchou F, Xu Y, Wu Y, Christen Y, Luo Y. EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease. FASEB J. 2007;21:2400–8.

    Article  CAS  PubMed  Google Scholar 

  117. Letenneur L, Proust-Lima C, Le Gouge A, Dartigues JF, Barberger-Gateau P. Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol. 2007;165(12):1364–71 [Epub ahead of print].

    Article  CAS  PubMed  Google Scholar 

  118. Grodstein F, Chen J, Willett WC. High-dose antioxidant supplements and cognitive function in community-dwelling elderly women. Am J Clin Nutr. 2003;77:975–84.

    CAS  PubMed  Google Scholar 

  119. Kanowski S, Herrmann WM, Stephan K, Wierich W, Horr R. Proof of efficacy of the Ginkgo biloba special extract EGb 761 in outpatients suffering from mild to moderate primary degenerative dementia of Alzheimer type or multi-infarct dementia. Pharmacopsychiatria. 1996;29:47–56.

    Article  CAS  Google Scholar 

  120. LeBars PL, Katz MM, Berman N, Itil TM, Freedman AM, Schatzberg A. A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. JAMA. 1997;278:1327–32.

    Article  CAS  Google Scholar 

  121. LeBars PL, Velasco FM, Ferguson JM, Dessain EC, Kieser M, Hoerr R. Influence of the severity of cognitive impairment on the effect of the Ginkgo biloba extract EGB 761 in Alzheimer’s disease. Neuropsychobiology. 2002;45:19–26.

    Article  CAS  Google Scholar 

  122. van Dongen M, van Rossum E, Kessels A, Sielhorst H, Knipschild P. Ginkgo for elderly people with dementia and age-associated memory impairment: a randomized clinical trial. J Clin Epidemiol. 2003;56:367–76.

    Article  PubMed  Google Scholar 

  123. Ihl R, Tribanek M, Bachinskaya N. Efficacy and tolerability of a once daily formulation of Ginkgo biloba extract EGb 761 in Alzheimer’s disease and vascular dementia: results from a randomized controlled trial. Pharmacopsychiatry. 2012;45:41–6.

    Article  CAS  PubMed  Google Scholar 

  124. Kim HL, Streltzer J, Goebert D. St. John’s wort for depression: a meta-analysis of well-defined clinical trials. J Nerv Ment Dis. 1999;187:532–9.

    Article  CAS  PubMed  Google Scholar 

  125. Linde K, Ramirez G, Mulrow CD, Pauls A, Weidenhammer W, Melchart D. St. John’s wort for depression—an overview and meta-analysis of randomized clinical trials. BMJ. 1996;313:253–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Linde K, Mulrow CD. St. John’s wort for depression (Cochrane Review). Cochrane Database Syst Rev. 1998;(4):CD000448.

    Google Scholar 

  127. Gaster B. Holroyd. St. John’s wort for depression: a systematic review. Arch Intern Med. 2000;160:152–6.

    Article  CAS  PubMed  Google Scholar 

  128. Whiskey E, Werneke U, Taylor D. A systematic review and meta-analysis of Hypericum perforatum in depression: a comprehensive clinical review. Int Clin Psychopharmacol. 2001;16:239–52.

    Article  CAS  PubMed  Google Scholar 

  129. Williams JW, Mulrow CD, Chiquette E. A systematic review of new pharmacotherapies for depression in adults. Ann Intern Med. 2000;132:743–56.

    Article  CAS  PubMed  Google Scholar 

  130. Szegedi A, Kohnen R, Dienel A, Kieser M. Acute treatment of moderate to severe depression with hypericum extract WS 5570 (St John’s wort): randomized controlled double blind non-inferiority trial versus paroxetine. BMJ. 2005. doi:10.1136/bmj.38356.655266.82.

    PubMed Central  PubMed  Google Scholar 

  131. Barnes J, Anderson LA, Phillipson JD. St. John’s wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties.J Pharm Pharmacol. 2001;53:583–600.

    Article  CAS  PubMed  Google Scholar 

  132. Bilia AR, Gallori S, Vincieri FF. St. John’s wort and depression: efficacy, safety, and tolerability—an update. Life Sci. 2002;70(26):3077–96.

    Article  CAS  PubMed  Google Scholar 

  133. Shelton RC, Keller MB, Gelenberg A, et al. Effectiveness of St. John’s wort in major depression: a randomized controlled trial. JAMA. 2001;285:1978–86.

    Article  CAS  PubMed  Google Scholar 

  134. Lecrubier Y, Clerc G, Didi R, Kieser M. Efficacy of St. John’s wort extract WS 5570 in major depression: a double-blind, placebo-controlled trial. Am J Psychiatry. 2002;159:1361–6.

    Article  CAS  PubMed  Google Scholar 

  135. Fava M, Alpert J, Nierenberg AA, et al. A double-blind, randomized trial of St. John’s wort, fluoxetine, and placebo in major depressive disorder. J Clin Psychopharmacol. 2005;25:441–7.

    Article  CAS  PubMed  Google Scholar 

  136. Chatterjee SS, Nolder M, Koch E, Erdelmeier C. Antidepressant activity of hypericum perforatum and hyperforin: the neglected possibility. Pharmacopsychiatry. 1998;31:7–15.

    Article  CAS  PubMed  Google Scholar 

  137. Müller WE, Singer A, Wonnemann M, Hafner U, Rolli M, Schäfer C. Hyperforin represents the neurotransmitter reuptake inhibiting constituent of hypericum extract. Pharmacopsychiatry. 1998;31:16–21.

    Article  PubMed  Google Scholar 

  138. Müller WE, Rolli M, Schäfer C, Hafner U. Effects of hypericum extract in biochemical models of anti-depressant activity. Pharmacopsychiatry. 1997;30:102–7.

    Article  PubMed  Google Scholar 

  139. Wonnemann M, Singer A, Müller WE. Inhibition of synaptosomal uptake of 3H-L-glutamate and 3H-GABA by hyperforin, a major constituent of St. John’s wort: the role of amiloride sensitive sodium conductive pathways. Neuropsychopharmacology. 2000;23:188–97.

    Article  CAS  PubMed  Google Scholar 

  140. Fiebich BL, Höllig A, Lieb K. Inhibition of substance P-induced cytokine synthesis by St. John’s wort extracts. Pharmacopsychiatry. 2001;34:S26–8.

    Article  CAS  PubMed  Google Scholar 

  141. Cott JM. In vitro receptor binding and enzyme inhibition by Hypericum perforatum extract. Pharmacopsychiatry. 1997;30:108–12.

    Article  CAS  PubMed  Google Scholar 

  142. Madabushi R, Frank B, Drewelow B, Derendorf H, Butterweck V. Hyperforin in St. John’s wort drug interactions. Eur J Clin Pharmacol. 2006;62:225–33.

    Article  CAS  PubMed  Google Scholar 

  143. Müller WE, Rolli M, Schäfer C, Hafner U. Effects of Hypericum extract on the expression of serotonin receptors. J Geriatr Psychiatry Neurol. 1994;7:63–4.

    Article  Google Scholar 

  144. Demmott K. St. John’s wort tied to serotonin syndrome. Clin Psychiatry News. 1998;26:28.

    Google Scholar 

  145. Landers DM, Arent SM. Exercise and mental health. In: Eklund RC, Tenenbaum G, editors. The handbook of sport psychology. 3rd ed. New York: Wiley; 2007. p. 469–91.

    Google Scholar 

  146. Kidd PM. Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Altern Med Rev. 2007;12:207–27.

    PubMed  Google Scholar 

  147. Freund-Levi Y, Eriksdotter-Jönhagen M, Cederholm T, Basun H, Faxén-Irving G, Garlind A, Vedin I, Vessby B, Wahlund L, Palmblad J. ω-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer’s disease: OmegAD study. A randomized double-blind trial. Arch Neurol. 2006;63:1402–8.

    Article  PubMed  Google Scholar 

  148. Cole GM, Ma Q-L, Frautschy SA. Omega-3 fatty acids and dementia. Prostaglandins Leukot Essent Fatty Acids. 2009;81:213–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Fontani G, Corradeschi F, Felici A, Alfatti F, Migliorini S, Lodi L. Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest. 2005;35:691–9.

    Article  CAS  PubMed  Google Scholar 

  150. Richardson AJ, Puri BK. A randomized double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26:233–9.

    Article  CAS  PubMed  Google Scholar 

  151. Stevens LJ, Zentall SS, Abate ML, Kuczek T, Burges JR. Omega-3 fatty acids in boys with behavior, learning, and health problems. Physiol Behav. 1996;59:915–20.

    Article  CAS  PubMed  Google Scholar 

  152. Voigt RG, Llorente AM, Jensen CL, Fraley JK, Berretta MC, Heird WC. A randomized, double-blind, placebo-controlled trial of docosahexaenoic acid supplementation in children with attention-deficit/hyperactivity disorder. J Pediatr. 2001;139:189–96.

    Article  CAS  PubMed  Google Scholar 

  153. Hirayama S, Hamazaki T, Terasawa K. Effects of docosahexaenoic acid-containing food administration on symptoms of attention-deficit/hyperactivity disorder—a placebo-controlled double-blind study. Eur J Clin Nutr. 2004;58:467–73.

    Article  CAS  PubMed  Google Scholar 

  154. Hamazaki T, Hirayama S. The effect of docosahexaenoic acid-containing food administration on symptoms of attention-deficit/hyperactivity disorder—a placebo-controlled double-blind study. Eur J Clin Nutr. 2004;58:838.

    Article  CAS  PubMed  Google Scholar 

  155. Stevens L, Zhang W, Peck L, Kuczek T, Grevstad N, Mahon A, Zentall SS, Arnold LE, Burgess JR. EFA supplementation in children with inattention, hyperactivity, and other disruptive behaviors. Lipids. 2003;38:1007–21.

    Article  CAS  PubMed  Google Scholar 

  156. Sinclair AJ, Begg D, Mathai M, Weisinger RS. Omega 3 fatty acids and the brain: review of studies in depression. Asia Pac J Clin Nutr. 2007;16:391–7.

    CAS  PubMed  Google Scholar 

  157. Mills JD, Hadley K, Bailes JE. Dietary supplementation with the omega-3 fatty acid docosahexaenoic acid in traumatic brain injury. Neurosurgery. 2011;68:474–81.

    Article  PubMed  Google Scholar 

  158. Mills JD, Bailes JE, Sedney CL, Hutchins H, Sears B. Omega-3 fatty acid supplementation and reduction of traumatic axonal injury in a rodent head injury model. J Neurosurg. 2011;114:77–84.

    Article  CAS  PubMed  Google Scholar 

  159. Wu A, Ying Z, Gomez-Pinilla F. Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma. 2004;21:1457–67.

    Article  PubMed  Google Scholar 

  160. Lespérance F, Frasure-Smith N, St-André E, Turecki G, Lespérance P, Wisniewski SR. The efficacy of omega-3 supplementation for major depression: a randomized controlled trial. J Clin Psychiatry. 2011;72:1054–62.

    Article  PubMed  CAS  Google Scholar 

  161. Martins JG. EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr. 2009;28:525–42.

    Article  CAS  PubMed  Google Scholar 

  162. Marangell LB, Martinez JM, Zboyan HA, Kertz B, Seung Kim HF, Puryear LJ. A double-blind, placebo-controlled study of the omega-3 fatty acid docosahexaenoic acid in the treatment of major depression. Am J Psychiatry. 2003;160:996–8.

    Article  PubMed  Google Scholar 

  163. Bloch MH, Hannestad J. Omega-3 fatty acids for the treatment of depression: systematic review and meta-analysis. Mol Psychiatry. 2012;17:1272–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Lin P-Y, Mischoulon D, Freeman MP, Matsuoka Y, Hibbeln J, Belmaker RH, Su K-P. Are omega-3 fatty acids anti-depressants or just mood-improving agents? Mol Psychiatry. 2012;17:1161–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Rogers PJ, Appleton KM, Kessler D, Peters TJ, Gunnell D, Hayward RC, Heatherley SV, Christian LM, McNaughton SA, Ness AR. No effect of n-3 long-chain polyunsaturated fatty acid (EPA and DHA) supplementation on depressed mood and cognitive function: a randomised controlled trial. Br J Nutr. 2008;99:421–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn M. Arent PhD, CSCS*D, FACSM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arent, S.M., Lutz, R.S. (2015). The Psychology of Supplementation in Sport and Exercise: Motivational Antecedents and Biobehavioral Outcomes. In: Greenwood, M., Cooke, M., Ziegenfuss, T., Kalman, D., Antonio, J. (eds) Nutritional Supplements in Sports and Exercise. Springer, Cham. https://doi.org/10.1007/978-3-319-18230-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18230-8_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18229-2

  • Online ISBN: 978-3-319-18230-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics