Skip to main content

Abstract

Nutrient timing is a popular strategy used by athletes, coaches, and researchers to maximize performance and the adaptations resulting from exercise training. Ingestion of key nutrients before, during, and after various forms of exercise has been shown to favorably impact a number of factors that go on to effect health, performance, and recovery. Research in this area is rapidly expanding, and findings are changing on an annual basis. This chapter is broken into sections discussing current recommendations and scientific findings concerning the administration of macronutrients, micronutrients, and other non-nutrients before, during, and after both endurance and resistance exercise. Finally, recommendations are put forth regarding when to employ various strategies, as well as whether certain strategies are worthy of consideration. Key points related to protein timing, caffeine timing, meal patterns, and caloric distribution are all covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sherman WM, Costill DL, Fink WJ, Miller JM. Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. Int J Sports Med. 1981;2(2):114–8.

    Article  CAS  PubMed  Google Scholar 

  2. Karlsson J, Saltin B. Diet, muscle glycogen, and endurance performance. J Appl Physiol. 1971;31(2):203–6.

    CAS  PubMed  Google Scholar 

  3. Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol. 1988;64(4):1480–5.

    CAS  PubMed  Google Scholar 

  4. Kerksick C, Stout J, Campbell B, Wilborn C, Kreider R, Kalman D, et al. International Society of Sports Nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2008;5(1):17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454–64.

    Article  CAS  PubMed  Google Scholar 

  6. Dennis SC, Noakes TD, Hawley JA. Nutritional strategies to minimize fatigue during prolonged exercise: fluid, electrolyte and energy replacement. J Sports Sci. 1997;15(3):305–13.

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez NR, Di Marco NM, Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc. 2009;41(3):709–31.

    Article  PubMed  CAS  Google Scholar 

  8. Burke LM, Cox GR, Culmmings NK, Desbrow B. Guidelines for daily carbohydrate intake: do athletes achieve them? Sports Med. 2001;31(4):267–99.

    Article  CAS  PubMed  Google Scholar 

  9. Sherman WM, Costill DL, Fink WJ, Hagerman FC, Armstrong LE, Murray TF. Effect of a 42.2-km footrace and subsequent rest or exercise on muscle glycogen and enzymes. J Appl Physiol. 1983;55:1219–24.

    CAS  PubMed  Google Scholar 

  10. Bussau VA, Fairchild TJ, Rao A, Steele P, Fournier PA. Carbohydrate loading in human muscle: an improved 1 day protocol. Eur J Appl Physiol. 2002;87(3):290–5.

    Article  CAS  PubMed  Google Scholar 

  11. Coyle EF, Coggan AR, Hemmert MK, Lowe RC, Walters TJ. Substrate usage during prolonged exercise following a preexercise meal. J Appl Physiol. 1985;59(2):429–33.

    CAS  PubMed  Google Scholar 

  12. Wright DA, Sherman WM, Dernbach AR. Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol. 1991;71(3):1082–8.

    CAS  PubMed  Google Scholar 

  13. Neufer PD, Costill DL, Flynn MG, Kirwan JP, Mitchell JB, Houmard J. Improvements in exercise performance: effects of carbohydrate feedings and diet. J Appl Physiol. 1987;62(3):983–8.

    CAS  PubMed  Google Scholar 

  14. Sherman WM, Brodowicz G, Wright DA, Allen WK, Simonsen J, Dernbach A. Effects of 4 h preexercise carbohydrate feedings on cycling performance. Med Sci Sports Exerc. 1989;21(5):598–604.

    Article  CAS  PubMed  Google Scholar 

  15. Tarnopolsky MA, Gibala M, Jeukendrup AE, Phillips SM. Nutritional needs of elite endurance athletes. Part I: carbohydrate and fluid requirements. Eur J Sport Sci. 2005;5(1):3–14.

    Article  Google Scholar 

  16. Foster C, Costill DL, Fink WJ. Effects of preexercise feedings on endurance performance. Med Sci Sports Exerc. 1979;11:1–5.

    CAS  Google Scholar 

  17. Hawley JA, Burke LM. Effect of meal frequency and timing on physical performance. Br J Nutr. 1997;77 Suppl 1:S91–103.

    Article  CAS  PubMed  Google Scholar 

  18. Galloway SD, Lott MJ, Toulouse LC. Pre-exercise carbohydrate feeding and high-intensity exercise capacity: effects of timing of intake and carbohydrate concentration. Int J Sport Nutr Exerc Metab. 2014;24(3):258–66.

    Article  CAS  PubMed  Google Scholar 

  19. Fielding RA, Costill DL, Fink WJ, King DS, Hargreaves M, Kovaleski JE. Effect of carbohydrate feeding frequencies and dosage on muscle glycogen use during exercise. Med Sci Sports Exerc. 1985;17(4):472–6.

    Article  CAS  PubMed  Google Scholar 

  20. Febbraio MA, Chiu A, Angus DJ, Arkinstall MJ, Hawley JA. Effects of carbohydrate ingestion before and during exercise on glucose kinetics and performance. J Appl Physiol. 2000;89(6):2220–6.

    CAS  PubMed  Google Scholar 

  21. Widrick JJ, Costill DL, Fink WJ, Hickey MS, McConell GK, Tanaka H. Carbohydrate feedings and exercise performance: effect of initial muscle glycogen concentration. J Appl Physiol. 1993;74(6):2998–3005.

    CAS  PubMed  Google Scholar 

  22. Ivy JL. Glycogen resynthesis after exercise: effect of carbohydrate intake. Int J Sports Med. 1998;19 Suppl 2:S142–5.

    Article  CAS  PubMed  Google Scholar 

  23. Jentjens R, Jeukendrup AE. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33:117–44.

    Article  PubMed  Google Scholar 

  24. Jentjens R, van Loon L, Mann CH, Wagenmakers AJM, Jeukendrup AE. Addition of protein and amino acids to carbohydrates does not enhance postexercise muscle glycogen synthesis. J Appl Physiol. 2001;91:839–46.

    CAS  PubMed  Google Scholar 

  25. van Loon L, Saris WH, Kruijshoop M. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr. 2000;72:106–11.

    PubMed  Google Scholar 

  26. Keizer H, Kuipers H, van Kranenburg G. Influence of liquid and solid meals on muscle glycogen resynthesis, plasma fuel hormone response, and maximal physical working capacity. Int J Sports Med. 1987;8:99–104.

    Article  CAS  PubMed  Google Scholar 

  27. Nicholas CW, Green PA, Hawkins RD. Carbohydrate intake and recovery of intermittent running capacity. Int J Sport Nutr. 1997;7:251–60.

    CAS  PubMed  Google Scholar 

  28. Ivy JL, Res PT, Sprague RC, Widzer MO. Effect of a carbohydrate-protein supplement on endurance performance during exercise of varying intensity. Int J Sport Nutr Exerc Metab. 2003;13(3):382–95.

    CAS  PubMed  Google Scholar 

  29. Saunders MJ, Kane MD, Todd MK. Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage. Med Sci Sports Exerc. 2004;36(7):1233–8.

    Article  CAS  PubMed  Google Scholar 

  30. Koopman R, Pannemans DL, Jeukendrup AE, Gijsen AP, Senden JM, Halliday D, et al. Combined ingestion of protein and carbohydrate improves protein balance during ultra-endurance exercise. Am J Physiol Endocrinol Metab. 2004;287(4):E712–20.

    Article  CAS  PubMed  Google Scholar 

  31. Ivy JL, Goforth HW, Jr., Damon BM, McCauley TR, Parsons EC, Price TB. Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. Journal of applied physiology (Bethesda, MD : 1985). 2002;93(4):1337–44.

    Google Scholar 

  32. Zawadzki KM, Yaspelkis 3rd BB, Ivy JL. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992;72(5):1854–9.

    CAS  PubMed  Google Scholar 

  33. Berardi JM, Noreen EE, Lemon PW. Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs. isoenergetic carbohydrate supplementation. J Int Soc Sports Nutr. 2008;5:24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Berardi JM, Price TB, Noreen EE, Lemon PW. Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement. Med Sci Sports Exerc. 2006;38(6):1106–13.

    Article  CAS  PubMed  Google Scholar 

  35. Howarth KR, Moreau NA, Phillips SM, Gibala MJ. Co-ingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol. 2009;106:1394–402.

    Article  CAS  PubMed  Google Scholar 

  36. Hawley JA, Burke LM, Phillips SM, Spriet LL. Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol (Bethesda, MD: 1985). 2011;110(3):834–45.

    Google Scholar 

  37. Margolis LM, Pasiakos SM. Optimizing intramuscular adaptations to aerobic exercise: effects of carbohydrate restriction and protein supplementation on mitochondrial biogenesis. Adv Nutr. 2013;4(6):657–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, et al. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab. 2001;281(2):E197–206.

    CAS  PubMed  Google Scholar 

  39. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Volpi E, Rasmussen BB. Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis. J Appl Physiol (Bethesda, MD: 1985). 2009;106(5):1730–9.

    Google Scholar 

  40. Gonzalez AM, Walsh AL, Ratamess NA, Kang J, Hoffman JR. Effect of a pre-workout energy supplement on acute multi-joint resistance exercise. J Sports Sci Med. 2011;10(2):261–6.

    PubMed Central  PubMed  Google Scholar 

  41. Ormsbee MJ, Mandler WK, Thomas DD, Ward EG, Kinsey AW, Simonavice E, et al. The effects of six weeks of supplementation with multi-ingredient performance supplements and resistance training on anabolic hormones, body composition, strength, and power in resistance-trained men. J Int Soc Sports Nutr. 2012;9(1):49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ormsbee MJ, Thomas DD, Mandler WK, Ward EG, Kinsey AW, Panton LB, et al. The effects of pre- and post-exercise consumption of multi-ingredient performance supplements on cardiovascular health and body fat in trained men after six weeks of resistance training: a stratified, randomized, double-blind study. Nutr Metab (Lond). 2013;10(1):39.

    Article  CAS  Google Scholar 

  43. Lowery RP, Joy JM, Dudeck JE, Oliveira de Souza E, McCleary SA, Wells S, et al. Effects of 8 weeks of Xpand(R) 2X pre workout supplementation on skeletal muscle hypertrophy, lean body mass, and strength in resistance trained males. J Int Soc Sports Nutr. 2013;10(1):44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Spradley BD, Crowley KR, Tai CY, Kendall KL, Fukuda DH, Esposito EN, et al. Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance. Nutr Metab (Lond). 2012;9:28.

    Article  CAS  Google Scholar 

  45. Hackney KJ, Bruenger AJ, Lemmer JT. Timing protein intake increases energy expenditure 24 h after resistance training. Med Sci Sports Exerc. 2010;42(5):998–1003.

    Article  CAS  PubMed  Google Scholar 

  46. Haff GG, Koch AJ, Potteiger JA, Kuphal KE, Magee LM, Green SB, et al. Carbohydrate supplementation attenuates muscle glycogen loss during acute bouts of resistance exercise. Int J Sport Nutr Exerc Metab. 2000;10(3):326–39.

    CAS  PubMed  Google Scholar 

  47. Bird SP, Tarpenning KM, Marino FE. Effects of liquid carbohydrate/essential amino acid ingestion on acute hormonal response during a single bout of resistance exercise in untrained men. Nutrition. 2006;22(4):367–75.

    Article  CAS  PubMed  Google Scholar 

  48. Bird SP, Tarpenning KM, Marino FE. Liquid carbohydrate/essential amino acid ingestion during a short-term bout of resistance exercise suppresses myofibrillar protein degradation. Metabolism. 2006;55(5):570–7.

    Article  CAS  PubMed  Google Scholar 

  49. Beelen M, Koopman R, Gijsen AP, Vandereyt H, Kies AK, Kuipers H, et al. Protein coingestion stimulates muscle protein synthesis during resistance-type exercise. Am J Physiol Endocrinol Metab. 2008;295(1):E70–7.

    Article  CAS  PubMed  Google Scholar 

  50. Esmarck B, Anderson JL, Olsen S, Richter EA, Mizuno M, Kjaer M. Timing postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol. 2001;535:301–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Cribb PJ, Williams AD, Carey MF, Hayes A. The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. Int J Sport Nutr Exerc Metab. 2006;16(5):494–509.

    CAS  PubMed  Google Scholar 

  52. Hartman JW, Tang JE, Wilkinson SB, Tarnopolsky MA, Lawrence RL, Fullerton AV, et al. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr. 2007;86(2):373–81.

    CAS  PubMed  Google Scholar 

  53. Phillips SM, Tang JE, Moore DR. The role of milk- and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr. 2009;28(4):343–54.

    Article  CAS  PubMed  Google Scholar 

  54. Kerksick CM, Rasmussen CJ, Lancaster SL, Magu B, Smith P, Melton C, et al. The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J Strength Cond Res. 2006;20(3):643–53.

    PubMed  Google Scholar 

  55. Willoughby DS, Stout JR, Wilborn CD. Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids. 2007;32(4):467–77.

    Article  CAS  PubMed  Google Scholar 

  56. Borsheim E, Tipton KD, Wolf SE, Wolfe RR. Essential amino acids and muscle protein recovery from resistance exercise. Am J Physiol Endocrinol Metab. 2002;283(4):E648–57.

    Article  CAS  PubMed  Google Scholar 

  57. Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR. Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc. 2003;35(3):449–55.

    Article  CAS  PubMed  Google Scholar 

  58. Pitkanen HT, Nykanen T, Knuutinen J, Lahti K, Keinanen O, Alen M, et al. Free amino acid pool and muscle protein balance after resistance exercise. Med Sci Sports Exerc. 2003;35(5):784–92.

    Article  CAS  PubMed  Google Scholar 

  59. Tipton KD, Ferrando AA, Phillips SM, Doyle DJ, Wolfe RR. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol. 1999;276(4 Pt 1):E628–34.

    CAS  PubMed  Google Scholar 

  60. Tipton KD, Wolfe RR. Exercise, protein metabolism, and muscle growth. Int J Sport Nutr Exerc Metab. 2001;11(1):109–32.

    CAS  PubMed  Google Scholar 

  61. Cribb PJ, Hayes A. Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sports Exerc. 2006;38(11):1918–25.

    Article  PubMed  Google Scholar 

  62. Hoffman JR, Ratamess NA, Tranchina CP, Rashti SL, Kang J, Faigenbaum AD. Effect of protein-supplement timing on strength, power, and body-composition changes in resistance-trained men. Int J Sport Nutr Exerc Metab. 2009;19(2):172–85.

    CAS  PubMed  Google Scholar 

  63. Campbell B, Kreider RB, Ziegenfuss T, La Bounty P, Roberts M, Burke D, et al. International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2007;4:8.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Aragon AA, Schoenfeld BJ. Nutrient timing revisited: is there a post-exercise anabolic window? J Int Soc Sports Nutr. 2013;10(1):5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Schoenfeld BJ, Aragon AA, Krieger JW. The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. J Int Soc Sports Nutr. 2013;10(1):53.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring). 2009;17(11):2100–2.

    Article  Google Scholar 

  67. Bray MS, Tsai JY, Villegas-Montoya C, Boland BB, Blasier Z, Egbejimi O, et al. Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int J Obes (Lond). 2010;34(11):1589–98.

    Article  CAS  Google Scholar 

  68. de Castro JM. The time of day and the proportions of macronutrients eaten are related to total daily food intake. Br J Nutr. 2007;98(5):1077–83.

    Article  PubMed  CAS  Google Scholar 

  69. Genton L, Melzer K, Pichard C. Energy and macronutrient requirements for physical fitness in exercising subjects. Clin Nutr. 2010;29(4):413–23.

    Article  CAS  PubMed  Google Scholar 

  70. Lambert EV, Speechly DP, Dennis SC, Noakes TD. Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet. Eur J Appl Physiol Occup Physiol. 1994;69(4):287–93.

    Article  CAS  PubMed  Google Scholar 

  71. Phinney SD, Bistrian BR, Evans WJ, Gervino E, Blackburn GL. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism. 1983;32(8):769–76.

    Article  CAS  PubMed  Google Scholar 

  72. Johnson NA, Stannard SR, Thompson MW. Muscle triglyceride and glycogen in endurance exercise: implications for performance. Sports Med. 2004;34(3):151–64.

    Article  PubMed  Google Scholar 

  73. Burke LM, Kiens B. “Fat adaptation” for athletic performance: the nail in the coffin? J Appl Physiol. 2006;100(1):7–8.

    Article  PubMed  Google Scholar 

  74. Burke LM, Hawley JA, Angus DJ, Cox GR, Clark SA, Cummings NK, et al. Adaptations to short-term high-fat diet persist during exercise despite high carbohydrate availability. Med Sci Sports Exerc. 2002;34(1):83–91.

    Article  PubMed  Google Scholar 

  75. Havemann L, West SJ, Goedecke JH, Macdonald IA, St Clair Gibson A, Noakes TD, et al. Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance. J Appl Physiol (Bethesda, MD: 1985). 2006;100(1):194–202.

    Google Scholar 

  76. Barry DW, Hansen KC, van Pelt RE, Witten M, Wolfe P, Kohrt WM. Acute calcium ingestion attenuates exercise-induced disruption of calcium homeostasis. Med Sci Sports Exerc. 2011;43(4):617–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Sherk VD, Barry DW, Villalon KL, Hansen KC, Wolfe P, Kohrt WM, editors. Timing of calcium supplementation relative to exercise alters the calcium homeostatic response to vigorous exercise. Endocrine’s Society Annual Meeting; 2013 June 18, 2013; San Francisco, CA.

    Google Scholar 

  78. Shea KL, Barry DW, Sherk VD, Hansen KC, Wolfe P, Kohrt WM. Calcium supplementation and PTH response to vigorous walking in postmenopausal women. Med Sci Sports Exerc. 2014;46(10):2007–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Fujii T, Matsuo T, Okamura K. The effects of resistance exercise and post-exercise meal timing on the iron status in iron-deficient rats. Biol Trace Elem Res. 2012;147(1–3):200–5.

    Article  CAS  PubMed  Google Scholar 

  80. Matsuo T, Kang HS, Suzuki H, Suzuki M. Voluntary resistance exercise improves blood hemoglobin concentration in severely iron-deficient rats. J Nutr Sci Vitaminol. 2002;48(2):161–4.

    Article  CAS  PubMed  Google Scholar 

  81. Goldstein ER, Ziegenfuss T, Kalman D, Kreider R, Campbell B, Wilborn C, et al. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7(1):5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Ryan EJ, Kim CH, Fickes EJ, Williamson M, Muller MD, Barkley JE, et al. Caffeine gum and cycling performance: a timing study. J Strength Cond Res. 2013;27(1):259–64.

    Article  PubMed  Google Scholar 

  83. Glade MJ. Caffeine-not just a stimulant. Nutrition. 2010;26(10):932–8.

    Article  CAS  PubMed  Google Scholar 

  84. Graham TE, Spriet LL. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J Appl Physiol. 1991;71(6):2292–8.

    CAS  PubMed  Google Scholar 

  85. Duncan MJ, Oxford SW. The effect of caffeine ingestion on mood state and bench press performance to failure. J Strength Cond Res. 2011;25(1):178–85.

    Article  PubMed  Google Scholar 

  86. Duncan MJ, Stanley M, Parkhouse N, Cook K, Smith M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur J Sport Sci. 2013;13(4):392–9.

    Article  PubMed  Google Scholar 

  87. Goldstein ER, Jacobs PL, Whitehurst M, Penhollow T, Antonio J. Caffeine enhances upper body strength in resistance-trained women. J Int Soc Sports Nutr. 2010;7(1):18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Pedersen DJ, Lessard SJ, Coffey VG, Churchley EG, Wootton AM, Ng T, et al. High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine. J Appl Physiol (Bethesda, MD: 1985). 2008;105(1):7–13.

    Google Scholar 

  89. Antonio J, Ciccone V. The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength. J Int Soc Sports Nutr. 2013;10(1):36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Candow DG, Zello GA, Ling B, Farthing JP, Chilibeck PD, McLeod K, et al. Comparison of creatine supplementation before versus after supervised resistance training in healthy older adults. Res Sports Med. 2014;22(1):61–74.

    Article  PubMed  Google Scholar 

  91. Syrotuik DG, Bell GJ. Acute creatine monohydrate supplementation: a descriptive physiological profile of responders vs. nonresponders. J Strength Cond Res. 2004;18(3):610–7.

    PubMed  Google Scholar 

  92. Chilibeck PD, Stride D, Farthing JP, Burke DG. Effect of creatine ingestion after exercise on muscle thickness in males and females. Med Sci Sports Exerc. 2004;36(10):1781–8.

    Article  CAS  PubMed  Google Scholar 

  93. Helms ER, Aragon AA, Fitschen PJ. Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr. 2014;11:20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Siegler JC, Marshall PW, Bray J, Towlson C. Sodium bicarbonate supplementation and ingestion timing: does it matter? J Strength Cond Res. 2012;26(7):1953–8.

    Article  PubMed  Google Scholar 

  95. Keim NL, Van Loan MD, Horn WF, Barbieri TF, Mayclin PL. Weight loss is greater with consumption of large morning meals and fat-free mass is preserved with large evening meals in women on a controlled weight reduction regimen. J Nutr. 1997;127(1):75–82.

    CAS  PubMed  Google Scholar 

  96. de Castro JM. The time of day of food intake influences overall intake in humans. J Nutr. 2004;134(1):104–11.

    PubMed  Google Scholar 

  97. Wu T, Sun L, ZhuGe F, Guo X, Zhao Z, Tang R, et al. Differential roles of breakfast and supper in rats of a daily three-meal schedule upon circadian regulation and physiology. Chronobiol Int. 2011;28(10):890–903.

    Article  CAS  PubMed  Google Scholar 

  98. Loboda A, Kraft WK, Fine B, Joseph J, Nebozhyn M, Zhang C, et al. Diurnal variation of the human adipose transcriptome and the link to metabolic disease. BMC Med Genomics. 2009;2:7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Ma Y, Bertone ER, Stanek 3rd EJ, Reed GW, Hebert JR, Cohen NL, et al. Association between eating patterns and obesity in a free-living US adult population. Am J Epidemiol. 2003;158(1):85–92.

    Article  PubMed  Google Scholar 

  100. Jakubowicz D, Barnea M, Wainstein J, Froy O. High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity (Silver Spring). 2013;21(12):2504–12.

    Article  CAS  Google Scholar 

  101. Leidy HJ, Bossingham MJ, Mattes RD, Campbell WW. Increased dietary protein consumed at breakfast leads to an initial and sustained feeling of fullness during energy restriction compared to other meal times. Br J Nutr. 2009;101(6):798–803.

    Article  CAS  PubMed  Google Scholar 

  102. Leidy HJ, Racki EM. The addition of a protein-rich breakfast and its effects on acute appetite control and food intake in ‘breakfast-skipping’ adolescents. Int J Obes (Lond). 2010;34(7):1125–33.

    Article  CAS  Google Scholar 

  103. Fabry P, Hejl Z, Fodor J, Braun T, Zvolankova K. The frequency of meals. Its relation to overweight, hypercholesterolaemia, and decreased glucose-tolerance. Lancet. 1964;2(7360):614–5.

    Article  CAS  PubMed  Google Scholar 

  104. Hejda S, Fabry P. Frequency of food intake in relation to some parameters of the nutritional status. Nutr Dieta Eur Rev Nutr Diet. 1964;64:216–28.

    Google Scholar 

  105. Metzner HL, Lamphiear DE, Wheeler NC, Larkin FA. The relationship between frequency of eating and adiposity in adult men and women in the Tecumseh Community Health Study. Am J Clin Nutr. 1977;30(5):712–5.

    CAS  PubMed  Google Scholar 

  106. Cameron JD, Cyr MJ, Doucet E. Increased meal frequency does not promote greater weight loss in subjects who were prescribed an 8-week equi-energetic energy-restricted diet. Br J Nutr. 2010;103(8):1098–101.

    CAS  PubMed  Google Scholar 

  107. Alencar MK, Kerksick CM, Beam J, McCormick J, White A, Salgado R, et al., editors. Influence of meal frequency on insulin, glucose, and appetite control in obese women undergoing a portion-controlled weight-loss intervention. American College of Sports Medicine; 2014 Wednesday, May 28th, 2014.; Orlando, FL.

    Google Scholar 

  108. Farshchi HR, Taylor MA, Macdonald IA. Beneficial metabolic effects of regular meal frequency on dietary thermogenesis, insulin sensitivity, and fasting lipid profiles in healthy obese women. Am J Clin Nutr. 2005;81(1):16–24.

    CAS  PubMed  Google Scholar 

  109. Bellisle F, McDevitt R, Prentice AM. Meal frequency and energy balance. Br J Nutr. 1997;77 Suppl 1:S57–70.

    Article  CAS  PubMed  Google Scholar 

  110. Kulovitz MG, Kravitz LR, Mermier C, Gibson AL, Conn CA, Kolkmeyer D, et al. Potential role of meal frequency as a strategy for weight loss and health in overweight or obese adults. Nutrition. 2014;30(4):386–92.

    Article  PubMed  Google Scholar 

  111. La Bounty PM, Campbell BI, Wilson J, Galvan E, Berardi J, Kleiner SM, et al. International Society of Sports Nutrition position stand: meal frequency. J Int Soc Sports Nutr. 2011;8:4.

    Article  PubMed Central  PubMed  Google Scholar 

  112. Moore DR, Areta J, Coffey VG, Stellingwerff T, Phillips SM, Burke LM, et al. Daytime pattern of post-exercise protein intake affects whole-body protein turnover in resistance-trained males. Nutr Metab (Lond). 2012;9(1):91.

    Article  CAS  Google Scholar 

  113. Areta JL, Burke LM, Ross ML, Camera DM, West DW, Broad EM, et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol. 2013;591(Pt 9):2319–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Weisgarber KD, Candow DG, Vogt ES. Whey protein before and during resistance exercise has no effect on muscle mass and strength in untrained young adults. Int J Sport Nutr Exerc Metab. 2012;22(6):463–9.

    CAS  PubMed  Google Scholar 

  115. Mamerow MM, Mettler JA, English KL, Casperson SL, Arentson-Lantz E, Sheffield-Moore M, et al. Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. J Nutr. 2014;144(6):876–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Res PT, Groen B, Pennings B, Beelen M, Wallis GA, Gijsen AP, et al. Protein ingestion before sleep improves postexercise overnight recovery. Med Sci Sports Exerc. 2012;44(8):1560–9.

    Article  CAS  PubMed  Google Scholar 

  117. Minor BD, Heusinger DE, Melanson EL, Hamilton KL, Miller BF. Energy balance changes the anabolic effect of postexercise feeding in older individuals. J Gerontol A Biol Sci Med Sci. 2012;67(11):1161–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Jordan LY, Melanson EL, Melby CL, Hickey MS, Miller BF. Nitrogen balance in older individuals in energy balance depends on timing of protein intake. J Gerontol A Biol Sci Med Sci. 2010;65(10):1068–76.

    Article  PubMed  CAS  Google Scholar 

  119. Greer BK, Price A, Jones B. Timing influence of carbohydrate-protein ingestion on muscle soreness and next-day running performance. J Diet Suppl. 2014;11(2):166–74.

    Article  CAS  PubMed  Google Scholar 

  120. Heesch MW, Mieras ME, Slivka DR. The performance effect of early versus late carbohydrate feedings during prolonged exercise. Appl Physiol Nutr Metab. 2014;39(1):58–63.

    Article  CAS  PubMed  Google Scholar 

  121. Trabelsi K, Stannard SR, Maughan RJ, Jammoussi K, Zeghal K, Hakim A. Effect of resistance training during Ramadan on body composition and markers of renal function, metabolism, inflammation, and immunity in recreational bodybuilders. Int J Sport Nutr Exerc Metab. 2012;22(4):267–75.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad M. Kerksick PhD, CSCS *D, ATC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kerksick, C.M., Cole, N.H. (2015). Nutrient Timing. In: Greenwood, M., Cooke, M., Ziegenfuss, T., Kalman, D., Antonio, J. (eds) Nutritional Supplements in Sports and Exercise. Springer, Cham. https://doi.org/10.1007/978-3-319-18230-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18230-8_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18229-2

  • Online ISBN: 978-3-319-18230-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics