Skip to main content

Abstract

The ability to recover from intense exercise often separates good athletes from great ones. In the past, “recovery” often simply included rest, therapeutic modalities (e.g., cryotherapy, thermotherapy, massage, hydration therapy, stretching protocols, myofascial release), and meeting basic nutritional needs for fluid and energy replenishment. Today, athletes have a number of additional options to help them recover from high-intensity training, one of which includes the judicious use of dietary supplements. This chapter briefly reviews nutritional strategies that have a strong theoretical background for enhancing rehydration/electrolyte balance, replenishing energy reserves, minimizing oxidative damage, and stimulating muscle repair after training regiments are complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol. 1992;73:1340–50.

    CAS  PubMed  Google Scholar 

  2. Nose H, Morimoto T, Ogura K. Distribution of water losses among fluid compartments of tissues under thermal dehydration in the rat. Jpn J Physiol. 1983;33:1019–29.

    Article  CAS  PubMed  Google Scholar 

  3. Costill DL, Sparks KE. Rapid fluid replacement after thermal dehydration. J Appl Physiol. 1973;34:299–303.

    CAS  PubMed  Google Scholar 

  4. Nose H, Mack GW, Shi X, Nader ER. Role of osmolality and plasma volume during rehydration in humans. J Appl Physiol. 1988;65:325–31.

    CAS  PubMed  Google Scholar 

  5. Shirreffs SM, Taylor AJ, Leiper JB, Maughan RJ. Post-exercise rehydration in man: effects of volume consumed and sodium content. Med Sci Sports Exerc. 1996;28:1260–71.

    Article  CAS  PubMed  Google Scholar 

  6. Meyer F, Bar-Or O. Fluid and electrolyte loss during exercise. Sports Med. 1994;18:4–9.

    Article  CAS  PubMed  Google Scholar 

  7. Convertino VA, Armstrong LE, Coyle EF, et al. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc. 1996;28:i–vii.

    Article  CAS  PubMed  Google Scholar 

  8. Casa DJ, Armstrong LE, Hillman SK, et al. National Athletic Trainers’ Association position statement: fluid replacement for athletes. J Athl Train. 2000;35:212–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Maughan RJ, Owen JH, Shirrefs SM, Leiper JB. Post-exercise rehydration in man: effects of electrolyte addition to ingested fluids. Eur J Appl Physiol. 1994;69:209–15.

    Article  CAS  Google Scholar 

  10. Yawata T. Effect of potassium solution on rehydration in rats: comparison with sodium solution and water. Jpn J Physiol. 1990;40:369–81.

    Article  CAS  PubMed  Google Scholar 

  11. Maughan RJ. Restoration of water and electrolyte balance after exercise. Int J Sports Med. 1998;(Suppl 2):s136–8.

    Article  Google Scholar 

  12. Shirreffs SM, Maughan RJ. Rehydration and recovery of fluid balance after exercise. Exerc Sport Sci Rev. 2000;28:27.

    CAS  PubMed  Google Scholar 

  13. Maughan RJ, Leiper JB. Post-exercise rehydration in man: effects of voluntary intake of four different beverages. Med Sci Sports Exerc. 1993;25(Suppl):S2.

    Article  Google Scholar 

  14. Vist GE, Maughan RJ. Gastric emptying of ingested solutions in man: effect of beverage glucose concentration. Med Sci Sports Exerc. 1994;26:1269–73.

    Article  CAS  PubMed  Google Scholar 

  15. Scheett TP, Webster MJ, Wagoner KD. Effectiveness of glycerol as a rehydrating agent. Int J Sport Nutr Exerc Metab. 2001;11:63–71.

    CAS  PubMed  Google Scholar 

  16. Montner P, Stark DM, Riedesel ML, et al. Pre-exercise glycerol hydration improves cycling endurance time. Int J Sports Med. 1996;17:27–33.

    Article  CAS  PubMed  Google Scholar 

  17. Magal M, Webster MJ, Sistrunk LE, Whitehead MT, Evans RK, Boyd JC. Comparison of glycerol and water hydration regimens on tennis-related performance. Med Sci Sports Exerc. 2003;35:150–6.

    Article  CAS  PubMed  Google Scholar 

  18. Kavouras SA, Armstrong LE, Maresh CM, et al. Rehydration with glycerol: endocrine, cardiovascular, and thermoregulatory responses during exercise in the heat. J Appl Physiol. 2006;100:442–50.

    Article  CAS  PubMed  Google Scholar 

  19. Wagner DR. Hyperhydrating with glycerol: implications for athletic performance. J Am Diet Assoc. 1999;99:207–12.

    Article  CAS  PubMed  Google Scholar 

  20. Godek SF, Bartolozzi AR, Godek JJ. Sweat rate and fluid turnover in American football players compared with runners in a hot and humid environment. Br J Sports Med. 2005;39:205–11.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Shirreffs SM, Maughan RJ. Whole body sweat collection in humans: an improved method with preliminary data on electrolyte content. J Appl Physiol. 1997;82:336–41.

    CAS  PubMed  Google Scholar 

  22. Stofan JR, Zachwiega JJ, Horswill CA, et al. Sweat and sodium losses during practice in professional football players: field studies. Med Sci Sports Exerc. 2002;34:S113.

    Article  Google Scholar 

  23. Allan JR, Wilson CG. Influence of heat acclimatization on sweat sodium concentration. J Appl Physiol. 1971;30:708–12.

    CAS  PubMed  Google Scholar 

  24. Costill DL, Cote R, Miller E, Miller T, Wynder S. Water and electrolyte replacement during repeated days of work in the heat. Aviat Space Environ Med. 1975;46:795–800.

    CAS  PubMed  Google Scholar 

  25. Stofan JR, Zachwieja JJ, Horswill CA, Murray R, Anderson SA, Eichner ER. Sweat and sodium losses in NCAA football players: a precursor to heat cramps? Int J Sport Nutr Exerc Metab. 2005;15:641–52.

    PubMed  Google Scholar 

  26. Institute of Medicine of the National Academies. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. Washington, DC: National Academies Press; 2004.

    Google Scholar 

  27. Godek SF, Godek JJ, Bartolozzi A. Thermal responses in football and cross-country athletes during their respective practices in a hot environment. J Athl Train. 2004;39:235–40.

    PubMed Central  PubMed  Google Scholar 

  28. NCAA Membership Service Staff. 2005-2006 NCAA division I manual. Indianapolis, IN: The National Collegiate Athletic Association; 2005.

    Google Scholar 

  29. Yeargin SW, Casa DJ, Armstrong LE, et al. Heat acclimatization and hydration status of American football players during initial summer workouts. J Strength Cond Res. 2006;20:463–70.

    PubMed  Google Scholar 

  30. Casa DJ, Clarkson PM, Roberts WO. American College of Sports Medicine roundtable on hydration and physical activity: consensus statements. Curr Sports Med Rep. 2005;4:115–27.

    Article  PubMed  Google Scholar 

  31. Cheuvront SN, Carter III R, Montain SJ, Sawka MN. Fluid balance and endurance exercise performance. Curr Sports Med Rep. 2003;2:202–8.

    Article  PubMed  Google Scholar 

  32. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand: exercise and fluid replacement. Med Sci Sports Exerc. 2007;39:377–90.

    Article  PubMed  Google Scholar 

  33. Noakes D. Fluid replacement during exercise. Exerc Sport Sci Rev. 1993;21:297.

    Article  CAS  PubMed  Google Scholar 

  34. Noakes TD, Sharwood K, Collins M, Perkins DR. The dipsomania of great distance: water intoxication in an Ironman triathlete. Br J Sports Med. 2004;38, E16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Speedy DB, Noakes TD, Rogers IR, et al. Hyponatremia in ultradistance triathletes. Med Sci Sports Exerc. 1999;31:809–15.

    Article  CAS  PubMed  Google Scholar 

  36. O’Toole M, Douglas PM, Laird RH, et al. Fluid and electrolyte status in athletes receiving medical care at an ultradistance triathlon. Clin J Sport Med. 1995;5:116–22.

    Article  PubMed  Google Scholar 

  37. Hew-Butler T, Almond C, Ayus JC, et al. Consensus statement of the 1st International Exercise-Associated Hyponatremia Consensus Development Conference, Cape Town, South Africa 2005. Clin J Sport Med. 2005;15:208–13.

    Article  PubMed  Google Scholar 

  38. Zambraski EJ. The renal system. In: Tipton CM, Tate CA, Terjung RL, editors. ACSM’s advanced exercise physiology. Philadelphia, PA: Lippincott Williams & Wilkins; 2005. p. 521–32.

    Google Scholar 

  39. Garigan TP, Ristedt DE. Death from hyponatremia as a result of acute water intoxication in an Army basic trainee. Mil Med. 1999;164:234–8.

    CAS  PubMed  Google Scholar 

  40. Speedy DB, Rogers IR, Noakes TD. Exercise-induced hyponatremia in ultradistance triathletes is caused by inappropriate fluid retention. Clin J Sport Med. 2000;10:272–8.

    Article  CAS  PubMed  Google Scholar 

  41. McArdle WD, Katch FI, Katch VL. Exercise physiology: energy, nutrition, and human performance. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  42. Androgue HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342:1581.

    Article  Google Scholar 

  43. Gardner JW. Death by water intoxication. Mil Med. 2002;5:432.

    Google Scholar 

  44. Almond CS, Shin AY, Fortescue EB, et al. Hyponatremia among runners in the Boston marathon. N Engl J Med. 2005;352:1550–6.

    Article  CAS  PubMed  Google Scholar 

  45. Noakes T. Fluid replacement during marathon running. Clin J Sport Med. 2003;13:309–18.

    Article  PubMed  Google Scholar 

  46. Hew-Butler TD, Sharwood K, Collins M, Speedy D, Noakes T. Sodium supplementation is not required to maintain serum sodium concentrations during an Ironman triathlon. Br J Sports Med. 2006;40:255–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Twerenbold R, Knechtle B, Kakebeeke TH, et al. Effects of different sodium concentrations in replacement fluids during prolonged exercise in women. Br J Sports Med. 2003;37:300–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Weschler LB. Exercise-associated hyponatremia: a mathematical review. Sports Med. 2005;35:899–922.

    Article  PubMed  Google Scholar 

  49. Barr SI, Costill DL, Fink WJ. Fluid replacement during prolonged exercise: effects of water, saline, or no fluid. Med Sci Sports Exerc. 1991;23:811–7.

    CAS  PubMed  Google Scholar 

  50. Ahlborg B, Bergstrom J, Ekelund LG, Hultman E. Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiol Scand. 1967;70:129–42.

    Article  CAS  Google Scholar 

  51. Bergstrom J, Hultman E. Synthesis of muscle glycogen in man after glucose and fructose infusion. Acta Med Scand. 1967;182:93–107.

    Article  CAS  PubMed  Google Scholar 

  52. Costill DL, Bowers R, Branam G, Sparks K. Muscle glycogen utilization during prolonged exercise on successive days. J Appl Physiol. 1971;31:834–8.

    CAS  PubMed  Google Scholar 

  53. Costill DL, Sherman WM, Fink WJ, Maresh C, Witten M, Miller JM. The role of dietary carbohydrate in muscle glycogen resynthesis after strenuous running. Am J Clin Nutr. 1981;34:183–6.

    Google Scholar 

  54. Maehlum S, Hostmark AT, Hermansen L. Synthesis of muscle glycogen during recovery after prolonged severe exercise in diabetic and non-diabetic subjects. Scand J Clin Lab Invest. 1977;37:309–16.

    Article  CAS  PubMed  Google Scholar 

  55. Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol. 1988;64:1480–5.

    CAS  PubMed  Google Scholar 

  56. Keizer HA, Kuipers H, van Kranenburg G, Geurten P. Influence of liquid and solid meals on muscle glycogen resynthesis, plasma fuel hormone response, and maximal physical working capacity. Int J Sports Med. 1987;8:99–104.

    Article  CAS  PubMed  Google Scholar 

  57. Reed MJ, Brozinick Jr JT, Lee MC, Ivy JL. Muscle glycogen storage postexercise: effect of mode of carbohydrate administration. J Appl Physiol. 1989;66:720–6.

    CAS  PubMed  Google Scholar 

  58. Maehlum S, Hermansen L. Muscle glycogen concentration during recovery after prolonged severe exercise in fasting subjects. Scand J Clin Lab Invest. 1978;38:557–60.

    Article  CAS  PubMed  Google Scholar 

  59. Blom PC, Hostmark AT, Vaage O, Kardel KR, Maehlum S. Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis. Med Sci Sports Exerc. 1987;19:491–6.

    CAS  PubMed  Google Scholar 

  60. Bergstrom J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1968;1968:71140–50.

    Google Scholar 

  61. Villar-Palasi C, Larner J. Uridinediphosphate glucose pyrophosphorylase from skeletal muscle. Arch Biochem Biophys. 1960;86:61–6.

    Article  CAS  PubMed  Google Scholar 

  62. Richter EA, Garetto LP, Goodman MN, Ruderman NB. Enhanced muscle glucose metabolism after exercise: modulation by local factors. Am J Physiol. 1984;246:E476–82.

    CAS  PubMed  Google Scholar 

  63. Garetto LP, Richter EA, Goodman MN, Ruderman NB. Enhanced muscle glucose metabolism after exercise: the two phases. Am J Physiol. 1984;246:E471–5.

    CAS  PubMed  Google Scholar 

  64. Nuttal FQ, Mooradian MC, Gannon C, Billington C, Krezowski P. Effect of protein ingestion on the glucose and insulin response to a standardized oral glucose load. Diabetes Care. 1984;7:465–70.

    Article  Google Scholar 

  65. Bergstrom J, Hultman E. Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature. 1967;210:309–10.

    Article  Google Scholar 

  66. Sherman WM, Doyle JA, Lamb DR, Strauss RH. Dietary carbohydrate, muscle glycogen, and exercise performance during 7 d of training. Am J Clin Nutr. 1993;57:27–31.

    CAS  PubMed  Google Scholar 

  67. Bussau VA, Fairchild TJ, Rao A, Steele P, Fournier PA. Carbohydrate loading in human muscle: an improved 1 day protocol. Eur J Appl Physiol. 2002;87:290–5.

    Article  CAS  PubMed  Google Scholar 

  68. Burke LM, Collier GR, Hargreaves M. Muscle glycogen storage after prolonged exercise: effect of glycemic index of carbohydrate feedings. J Appl Physiol. 1993;75:1019–23.

    CAS  PubMed  Google Scholar 

  69. Williams MB, Raven PB, Fogt DL, Ivy JL. Effects of recovery beverages on glycogen restoration and endurance exercise performance. J Strength Cond Res. 2003;17:12–9.

    PubMed  Google Scholar 

  70. Zawadzki KM, Yaspelkis 3rd BB, Ivy JL. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992;72:1854–9.

    CAS  PubMed  Google Scholar 

  71. Wanke CA, Pleskow D, Degirolami PC, et al. A medium chain triglyceride-based diet in patients with HIV and chronic diarrhea reduces diarrhea and malabsorption: a prospective, controlled trial. Nutrition. 1996;12:766–71.

    Article  CAS  PubMed  Google Scholar 

  72. Craig GB, Darnell BE, Weinsier RL, et al. Decreased fat and nitrogen losses in patients with AIDS receiving medium-chain-triglyceride-enriched formula vs. those receiving long-chain-triglyceride-containing formula. J Am Diet Assoc. 1997;97:605–11.

    Article  CAS  PubMed  Google Scholar 

  73. Fan ST. Review: nutritional support for patients with cirrhosis. Gastroenterol Hepatol. 1997;12:282–6.

    Article  CAS  Google Scholar 

  74. Jiang ZM, Zhang SY, Wang XR, et al. A comparison of medium-chain and long-chain triglycerides in surgical patients. Ann Surg. 1993;217:175–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Bach AC, Ingenbleek Y, Frey A. The usefulness of dietary medium-chain triglycerides in body weight control: fact or fancy? J Lipid Res. 1996;37:708–26.

    CAS  PubMed  Google Scholar 

  76. Hawley JA, Brouns F, Jeukendrup A. Strategies to enhance fat utilization during exercise. Sports Med. 1998;25:241–57.

    Article  CAS  PubMed  Google Scholar 

  77. Jeukendrup AE, Thielen JJ, Wagenmakers AJ, et al. Effect of medium-chain triacylglycerol and carbohydrate ingestion during exercise on substrate utilization and subsequent cycling performance. Am J Clin Nutr. 1998;67:397–404.

    CAS  PubMed  Google Scholar 

  78. West DB, Delany JP, Camet PM, et al. Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol. 1998;275(Pt 2):R667–72.

    CAS  PubMed  Google Scholar 

  79. Park Y, Albright KJ, Liu W, et al. Effect of conjugated linoleic acid on body composition in mice. Lipids. 1997;32:853–8.

    Article  CAS  PubMed  Google Scholar 

  80. Ostrowski E, Muralitharan M, Cross RF. Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs. J Nutr. 1999;129:2037–42.

    Google Scholar 

  81. Song HJ, Grant I, Rotondo D, Mohede I, Sattar N, Heys SD, Wahle KW. Effect of CLA supplementation on immune function in young healthy volunteers. Eur J Clin Nutr. 2005;59:508–17.

    Article  CAS  PubMed  Google Scholar 

  82. Gavino VC, Gavino G, Leblanc MJ, Tuchweber B. An isomeric mixture of conjugated linoleic acids but not pure cis-9, trans-11-octadecadienoic acid affects body weight gain and plasma lipids in hamsters. J Nutr. 2000;130:27–9.

    CAS  PubMed  Google Scholar 

  83. Pariza MW, Park Y, Cook ME. Mechanisms of action of conjugated linoleic acid: evidence and speculation. Proc Soc Exp Biol Med. 2000;223:8–13.

    Article  CAS  PubMed  Google Scholar 

  84. Riserus U, Arner P, Brismar K, Vessby B. Treatment with dietary trans10-cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care. 2002;25:1516–21.

    Article  CAS  PubMed  Google Scholar 

  85. Watt K, Garnham A, Snow R. Skeletal muscle total creatine content and creatine transporter gene expression in vegetarians prior to and following creatine supplementation. Int J Sport Nutr Exerc Metab. 2004;14:517–31.

    CAS  PubMed  Google Scholar 

  86. Persky AM, Brazeau GA, Hochhaus G. Pharmacokinetics of the dietary supplement creatine. Clin Pharmacokinet. 2003;42:557–74.

    Article  CAS  PubMed  Google Scholar 

  87. Willoughby D, Rosene J. Effects of oral creatine and resistance training on myosin heavy chain expression. Med Sci Sports Exerc. 2001;33:1674–81.

    Article  CAS  PubMed  Google Scholar 

  88. Guerrero-Ontiveros ML, Wallimann T. Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol Cell Biochem. 1988;184:427–37.

    Article  Google Scholar 

  89. Murphy R, McConell G, Cameron-Smith D, et al. Creatine transporter protein content, localization, and gene expression in rat skeletal muscle. Am J Physiol Cell Physiol. 2001;280:C415–22.

    CAS  PubMed  Google Scholar 

  90. Branch JD. Effect of creatine supplementation on body composition and performance: a meta-analysis. Int J Sport Nutr Exerc Metab. 2003;13:198–226.

    CAS  PubMed  Google Scholar 

  91. Kreider RB. Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem. 2003;244:89–94.

    Article  CAS  PubMed  Google Scholar 

  92. Rawson ES, Volek JS. Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance. J Strength Cond Res. 2003;17:822–31.

    PubMed  Google Scholar 

  93. Green A, Hultman E, Macdonald I, Sewell D, Greenhaff P. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol. 1996;271(5 Pt 1):E821–6.

    CAS  PubMed  Google Scholar 

  94. Peral MJ, Garcia-Delgado M, Calonge ML, Durán JM, De La Horra MC, Wallimann T, Speer O, Ilundáin A. Human, rat and chicken small intestinal Na+– Cl– -creatine transporter: functional, molecular characterization and localization. J Physiol. 2002;545(1):133–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Brault J, Terjung R. Purine salvage to adenine nucleotides in different skeletal muscle fiber types. J Appl Physiol. 2001;91:231–8.

    CAS  PubMed  Google Scholar 

  96. Hellsten Y, Sjodin B, Richter E, Bangsbo J. Urate uptake and lowered ATP levels in human skeletal muscle after high-intensity intermittent exercise. Am J Physiol Endocrinol Metab. 1998;274:E600–66.

    CAS  Google Scholar 

  97. Hellsten-Westing Y, Balsom P, Norman B, Sjodin B. The effect of high-intensity training on purine metabolism in man. Acta Physiol Scand. 1993;149:405–12.

    Article  CAS  PubMed  Google Scholar 

  98. Tullson P, John-Alder H, Hood D, Terjung R. De novo synthesis of adenine nucleotides in different skeletal muscle fiber types. Am J Physiol Cell Physiol. 1988;255:C271–7.

    CAS  Google Scholar 

  99. Zarzeczny R, Brault J, Abraham K, Hancock C, Terjung R. Influence of ribose on adenine salvage after intense muscle contractions. J Appl Physiol (1985). 2001;91:1775–81.

    CAS  Google Scholar 

  100. Kerksick C, Rasmussen C, Bowden R, Leutholtz B, Harvey T, Earnest C, Greenwood M, Almada A, Kreider R. Effects of ribose supplementation prior to and during intense exercise on anaerobic capacity and metabolic markers. Int J Sport Nutr Exerc Metab. 2005;15:653–64.

    CAS  PubMed  Google Scholar 

  101. Berardi J, Ziegenfuss T. Effects of ribose supplementation of repeated sprint performance in men. J Strength Cond Res. 2003;17:47–52.

    PubMed  Google Scholar 

  102. Kreider R, Melton C, Greenwood M, Rasmussen C, Lundberg J, Earnest C, Almada A. Effects of oral D-ribose supplementation on anaerobic capacity and selected metabolic markers in health males. Int J Sport Nutr Exerc Metab. 2003;13:76–86.

    CAS  PubMed  Google Scholar 

  103. Eijnde B, Van Leemputte M, Brouns F, Van Der Vusse G, Labarque V, Ramaekers M, Van Schuylenberg R, Verbessem P, Wijnen H, Hespel P. No effects of oral ribose supplementation on repeated maximal exercise and de novo ATP resynthesis. J Appl Physiol. 2001;91:2275–81.

    CAS  PubMed  Google Scholar 

  104. Kennedy G, Spence V, McLaren M, Hill A, Underwood C, Belch J. Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Biol Med. 2005;9:584–98.

    Article  CAS  Google Scholar 

  105. Schafer F, Buettner G. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30:1191–212.

    Article  CAS  PubMed  Google Scholar 

  106. Lennon SV, Martin SJ, Cotter TG. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 1991;24:203–14.

    Article  CAS  PubMed  Google Scholar 

  107. Valko M, Morris H, Cronin M. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–208.

    Article  CAS  PubMed  Google Scholar 

  108. Evans M, Cooke M. Factors contributing to the outcome of oxidative damage to nucleic acids. Bioessays. 2004;26:533–42.

    Article  CAS  PubMed  Google Scholar 

  109. Alessio HM. Exercise-induced oxidative stress. Med Sci Sports Exerc. 1993;25:218–24.

    Article  CAS  PubMed  Google Scholar 

  110. Davies KJ, Quintaniha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982;107:1198–205.

    Article  CAS  PubMed  Google Scholar 

  111. Jackson MJ, Edwards RH, Symons MC. Electron spin resonance studies of intact mammalian skeletal muscle. Biochim Biophys Acta. 1985;847:185–90.

    Article  CAS  PubMed  Google Scholar 

  112. Novelli GP, Bracciotti G, Falsini S. Spin-trappers and vitamin E prolong endurance to muscle fatigue in mice. Free Radic Biol Med. 1990;8:9–13.

    Article  CAS  PubMed  Google Scholar 

  113. Quintanilha AT. Effects of physical exercise and/or vitamin E on tissue oxidative metabolism. Biochem Soc Trans. 1984;12:403–4.

    Article  CAS  PubMed  Google Scholar 

  114. Ji LL. Exercise, oxidative stress, and antioxidants. Am J Sports Med. 1996;24(Suppl):S20–4.

    CAS  PubMed  Google Scholar 

  115. Fischer CP, Hiscock NJ, Penkowa M, et al. Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle. J Physiol. 2004;558:633–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Bloomer RJ, Goldfarb AH, McKenzie MJ. Oxidative stress response to aerobic exercise: comparison of antioxidant supplements. Med Sci Sports Exerc. 2006;38:1098–105.

    Article  CAS  PubMed  Google Scholar 

  117. Goldfarb AH, Bloomer RJ, McKenzie MJ. Combined antioxidant treatment effects on blood oxidative stress after eccentric exercise. Med Sci Sports Exerc. 2005;37:234–9.

    Article  CAS  PubMed  Google Scholar 

  118. Sumida S, Tanaka K, Kitao H, Nakadomo F. Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. Int J Biochem. 1989;21:835–8.

    Article  CAS  PubMed  Google Scholar 

  119. Evans WJ, Cannon JG. The metabolic effects of exercise-induced muscle damage. Exec Sport Sci Rev. 1991;19:99–125.

    CAS  Google Scholar 

  120. Taghiyar M, Darvishi L, Askari G, Feizi A, Hairi M, Mashhadi N, Ghiasvand R. The effect of vitamin C and E supplementation on muscle damage and oxidative stress in female athletes: a clinical trial. Int J Prev Med. 2013;4:S16–23.

    PubMed Central  PubMed  Google Scholar 

  121. Zoppi C, Hohl R, Silva F, Lazarin F, Neto J, Stancanneli M, Macedo D. Vitamin C and E supplementation effects in professional soccer players under regular training. J Int Soc Sports Nutr. 2006;3:37–44.

    Article  PubMed Central  PubMed  Google Scholar 

  122. Naziroglu M, Kilinc F, Uguz A, Celik O, Bal R, Butterworth P, Baydar M. Oral vitamin C and E combination modulates blood lipid peroxidation and antioxidant vitamin levels in maximal exercising basketball players. Cell Biochem Funct. 2010;28:300–5.

    Article  CAS  PubMed  Google Scholar 

  123. Thompson D, Williams C, Garcia-Roves P, McGregor SJ, McArdle F, Jackson MJ. Post-exercise vitamin C supplementation and recovery from demanding exercise. Eur J Appl Physiol. 2003;89:393–400.

    Article  CAS  PubMed  Google Scholar 

  124. Close GL, Ashton T, Cable T, et al. Ascorbic acid supplementation does not attenuate post-exercise muscle soreness following muscle-damaging exercise but may delay the recovery process. Br J Nutr. 2006;95:976–81.

    Article  CAS  PubMed  Google Scholar 

  125. Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med. 2001;15:745–53.

    Article  Google Scholar 

  126. Bryer SC, Goldfarb AH. Effect of high dose vitamin C supplementation on muscle soreness, damage, function, and oxidative stress to eccentric exercise. Int J Sport Nutr Exerc Metab. 2006;16:270–80.

    CAS  PubMed  Google Scholar 

  127. Thompson D, Williams C, McGregor SJ, et al. Prolonged vitamin C supplementation and recovery from demanding exercise. Int J Sport Nutr Exerc Metab. 2001;11:466–81.

    CAS  PubMed  Google Scholar 

  128. Goldfarb AH, Patrick SW, Bryer S, You T. Vitamin C supplementation affects oxidative-stress blood markers in response to a 30-min run at 75% VO2max. Int J Sport Nutr Exerc Metab. 2005;15:279–90.

    CAS  PubMed  Google Scholar 

  129. Hathcock JN, Azzi A, Blumberg J, et al. Vitamins E and C are safe across a broad range of intakes. Am J Clin Nutr. 2005;81:736–45.

    CAS  PubMed  Google Scholar 

  130. Consumers Union. Is E for you? Consum Rep Health. 1996;8:121–4.

    Google Scholar 

  131. Ristow M, Zarse K, Oberbach A, Lkoting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn C, Bluher M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106:8665–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Steiber A, Kerner J, Hoppel C. Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med. 2004;25:455–73.

    Article  CAS  PubMed  Google Scholar 

  133. Ringseis R, Keller H, Eder K. Mechanisms underlying the anti-wasting effect of L-carnitine supplementation under pathologic conditions: evidence from experimental and clinical studies. Eur J Nutr. 2013;52:1421–42.

    Article  CAS  PubMed  Google Scholar 

  134. Kraemer WJ, Volek JS, French DN, et al. The effects of L-carnitine L-tartrate supplementation on hormonal responses to resistance exercise and recovery. J Strength Cond Res. 2003;7:455–62.

    Google Scholar 

  135. Volek JS, Kraemer WJ, Rubin MR, Gomez AL, Ratamess NA, Gaynor P. l-Carnitine l-tartrate supplementation favorably affects markers of recovery from exercise stress. Am J Physiol Endocrinol Metab. 2002;282:E474–82.

    Article  CAS  PubMed  Google Scholar 

  136. Spiering BA, Kraemer WJ, Vingren JL, et al. Responses of criterion variables to different supplemental doses of l-carnitine l-tartrate. J Strength Cond Res. 2007;21:259–64.

    Article  PubMed  Google Scholar 

  137. Brass EP, Hiatt WR. The role of carnitine and carnitine supplementation during exercise in man and in individuals with special needs. J Am Coll Nutr. 1998;17:207–15.

    Article  CAS  PubMed  Google Scholar 

  138. Kraemer WJ, Volek JS. l-Carnitine supplementation for the athlete: a new perspective. Ann Nutr Metab. 2000;44:88–9.

    Google Scholar 

  139. Rubin MR, Volek JS, Gomez AL, et al. Safety measures of l-carnitine l-tartrate supplementation in healthy men. J Strength Cond Res. 2001;15:486–90.

    CAS  PubMed  Google Scholar 

  140. Curi R, Lagranha CJ, Doi SQ, Selliti DF, Procópio J, Pithon-Curi TC, Corless M, Newsholme P. Molecular mechanisms of glutamine action. J Cell Physiol. 2005;204:392–400.

    Article  CAS  PubMed  Google Scholar 

  141. Antonio J, Sanders M, Kalman D, Woodgate D, Street C. The effects of high-dose glutamine ingestion on weightlifting performance. J Strength Cond Res. 2002;16:157–60.

    PubMed  Google Scholar 

  142. Newsholme EA, Castell LM. Amino acids, fatigue and immunosuppression in exercise. In: Maughan RJ, editor. Nutrition in sport, IOC encyclopedia of sport. Oxford: Blackwell; 2000. p. 153.

    Google Scholar 

  143. Ardawi MSM, Newsholme EA. Metabolism in lymphocytes and its importance in the immune response. Essays Biochem. 1985;21:1–44.

    CAS  PubMed  Google Scholar 

  144. Elia M, Wood S, Khan K, Pullicino E. Ketone body metabolism in lean male adults during short-term starvation, with particular reference to forearm muscle metabolism. Clin Sci. 1990;78:579–84.

    Article  CAS  PubMed  Google Scholar 

  145. Castell LM, Poortmans JR, Newsholme EA. Does glutamine have a role in reducing infections in athletes? Eur J Appl Physiol Occup Physiol. 1996;73:488–90.

    Article  CAS  PubMed  Google Scholar 

  146. Kargotich S, Goodman C, Dawson B, Morton AR, Keast D, Joske DJ. Plasma glutamine responses to high-intensity exercise before and after endurance training. Res Sports Med. 2005;13:287–300.

    Article  PubMed  Google Scholar 

  147. Rennie MJ, Edwards RHT, Krywawych S, et al. Effect of protein turnover in man. Clin Sci (Lond). 1981;61:627–39.

    Article  CAS  Google Scholar 

  148. Amores-Sanchez M, Medina M. Glutamine, as a precursor of glutathione, and oxidative stress. Mol Genet Metab. 1999;67:100–5.

    Article  CAS  PubMed  Google Scholar 

  149. Matés J, Pérez-Gómez C, Núñez de Castro I, Asenjo M, Márquez v. Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol. 2002;34:439–58.

    Article  PubMed  Google Scholar 

  150. Ramallo B, Charro M, Foschini D, Prestes J, Pihon-Curi T, Evangelista A, Lopes C, Galatti L. Acute glutamine supplementation does not affect muscle damage profile after resistance training. Int J Sport Sci. 2013;3:4–9.

    Google Scholar 

  151. Castell LM. Glutamine supplementation in vitro and in vivo, in exercise and in immunodepression. Sports Med. 2003;16:323–45.

    Article  Google Scholar 

  152. Castell LM, Newsholme EA. The relation between glutamine and the immunodepression observed in exercise. Amino Acids. 2001;20:49–61.

    Article  CAS  PubMed  Google Scholar 

  153. Juretic A, Spagnoli GC, Horig H, et al. Glutamine requirements in the generation of lymphokine activated killer cells. Clin Nutr. 1994;13:42–9.

    Article  CAS  PubMed  Google Scholar 

  154. Candow DG, Chilibeck PD, Burke DG, Davison KS, Smith-Palmer T. Effect of glutamine supplementation combined with resistance training in young adults. Eur J Appl Physiol. 2001;86:142–9.

    Article  CAS  PubMed  Google Scholar 

  155. Fujita S, Rasmussen BB, Cadenas JG, Grady JJ, Volpi E. Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. Am J Physiol Endocrinol Metab. 2006;291:E745–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Biolo G, Fleming RYD, Wolfe RR. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J Clin Invest. 1995;95:811–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Claessens M, Calame W, Siemensma AD, Van Baak MA, Saris WH. The effect of different protein hydrolysate/carbohydrate mixtures on postprandial glucagon and insulin responses in healthy subjects. Eur J Clin Nutr. 2009;63(1):48–56 [Epub 2007 Sep 12].

    Article  CAS  PubMed  Google Scholar 

  158. Manders RJ, Wagenmakers AJ, Koopman R, et al. Co-ingestion of a protein hydrolysate and amino acid mixture with carbohydrate improves plasma glucose disposal in patients with type 2 diabetes. Am J Clin Nutr. 2005;82:72–83.

    Google Scholar 

  159. Kreider RB, Miriel V, Bertun E. Amino acid supplementation and exercise performance: analysis of the proposed ergogenic value. Sports Med. 1993;16:190–209.

    Article  CAS  PubMed  Google Scholar 

  160. Levenhagen DK, Carr C, Carlson MG, Maron DJ, Borel MJ, Flakoll PJ. Postexercise protein intake enhances whole-body and leg protein accretion in humans. Med Sci Sports Exerc. 2002;34:828837.

    Article  Google Scholar 

  161. Levenhagen DK, Gresham JD, Carlson MG, Maron DJ, Borel MJ, Flakoll PJ. Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab. 2001;280:E982–93.

    CAS  PubMed  Google Scholar 

  162. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An oral essential acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol. 2000;88:386–92.

    CAS  PubMed  Google Scholar 

  163. Koopman R, Wagenmakers AJ, Manders RJ, et al. Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects. Am J Physiol Endocrinol Metab. 2005;288:E645–53.

    Article  CAS  PubMed  Google Scholar 

  164. Stephens B, Braun B. Impact of nutrient intake timing on the metabolic response to exercise. Nutr Rev. 2008;66(8):473–6.

    Article  PubMed  Google Scholar 

  165. Dodd KM, Tee AR. Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab. 2012;302(11):E1329–42.

    Article  CAS  PubMed  Google Scholar 

  166. Norton LE, Layman DK. Leucine regulates translation of protein synthesis in skeletal muscle after exercise. J Nutr. 2006;136:533S–7.

    CAS  PubMed  Google Scholar 

  167. Dardevet D, Remond D, Peyron MA, Papet I, Savary-Auzeloux I, Mosoni L. Muscle wasting and resistance of muscle anabolism: the “anabolic threshold concept” for adapted nutritional strategies during sarcopenia. Sci World J. 2012;2012:269531.

    Article  Google Scholar 

  168. Pasiakos SM, McClung JP. Supplemental dietary leucine and the skeletal muscle anabolic response to essential amino acids. Nutr Rev. 2011;69(9):550–7.

    Article  PubMed  Google Scholar 

  169. Glynn EL, Fry CS, Drummond MJ, et al. Excess leucine intake enhances muscle anabolic signaling but not net protein anabolism in young men and women. J Nutr. 2010;140:1970–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  170. Bird SP, Tarpenning KM, Marino FE. Independent and combined effects of liquid carbohydrate/essential amino acid ingestion on hormonal and muscular adaptations following resistance training in untrained men. Eur J Appl Physiol. 2006;97:225–38.

    Article  CAS  PubMed  Google Scholar 

  171. Koopman R, Saris WH, Wagenmakers AJ, van Loon LJ. Nutritional interventions to promote post-exercise muscle protein synthesis. Sports Med. 2007;37(10):895–906.

    Article  PubMed  Google Scholar 

  172. Koopman R, Pannemans DL, Jeukendrup AE, et al. Combined ingestion of protein and carbohydrate improves protein balance during ultra-endurance exercise. Am J Physiol Endocrinol Metab. 2004;287:E712–20.

    Article  CAS  PubMed  Google Scholar 

  173. Watford M, Wu G. Glutamine metabolism in uricotelic species: variations in skeletal muscle glutamine synthesis, glutaminase, glutamine levels and rates of protein synthesis. Comp Biochem Physiol B Biochem Mol Biol. 2005;140:607–14.

    Article  PubMed  CAS  Google Scholar 

  174. Jayakumar AR, Rao KV, Murthy CR, Norenberg MD. Glutamine in the mechanisms of ammonia-induced astrocyte swelling. Neurochem Int. 2006;48:623–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim N. Ziegenfuss PhD, CSCS, FISSN .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ziegenfuss, T.N., Landis, J., Willoughby, D., Greenwood, M. (2015). Nutritional Supplements to Enhance Recovery. In: Greenwood, M., Cooke, M., Ziegenfuss, T., Kalman, D., Antonio, J. (eds) Nutritional Supplements in Sports and Exercise. Springer, Cham. https://doi.org/10.1007/978-3-319-18230-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18230-8_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18229-2

  • Online ISBN: 978-3-319-18230-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics