Advertisement

Reeb Graphs Through Local Binary Patterns

  • Ines JanuschEmail author
  • Walter G. Kropatsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9069)

Abstract

This paper presents an approach to derive critical points of a shape, the basis of a Reeb graph, using a combination of a medial axis skeleton and features along this skeleton. A Reeb graph captures the topology of a shape. The nodes in the graph represent critical points (positions of change in the topology), while edges represent topological persistence. We present an approach to compute such critical points using Local Binary Patterns. For one pixel the Local Binary Pattern feature vector is derived comparing this pixel to its neighbouring pixels in an environment of a certain radius. We start with an initial segmentation and a medial axis representation. Along this axis critical points are computed using Local Binary Patterns with the radius, defining the neighbouring pixels, set a bit larger than the radius according to the medial axis transformation. Critical points obtained in this way form the node set in a Reeb graph, edges are given through the connectivity of the skeleton. This approach aims at improving the representation of flawed segmented data. In the same way segmentation artefacts, as for example single pixels representing noise, may be corrected based on this analysis.

Keywords

Reeb Graphs Local Binary Patterns Local Features Critical Points Shape Representation Image Segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Reeb graphs for shape analysis and applications. Theoretical Computer Science 392(1-3), 5–22 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ge, X., Safa, I.I., Belkin, M., Wang, Y.: Data skeletonization via Reeb graphs. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P., Pereira, F.C.N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 24, pp. 837–845 (2011)Google Scholar
  3. 3.
    Werghi, N., Xiao, Y., Siebert, J.: A functional-based segmentation of human body scans in arbitrary postures. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36(1), 153–165 (2006)CrossRefGoogle Scholar
  4. 4.
    Janusch, I., Kropatsch, W.G., Busch, W., Ristova, D.: Representing roots on the basis of reeb graphs in plant phenotyping. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014 Worshops, Part IV. LNCS, vol. 8928, pp. 75–88. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  5. 5.
    Nyström, I., Sanniti di Baja, G., Svensson, S.: Curve skeletonization by junction detection in surface skeletons. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 229–238. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Pietikäinen, M.: Image analysis with local binary patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 115–118. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Janusch, I., Kropatsch, W.G., Busch, W.: Reeb graph based examination of root development. In: Proceedings of the 19th Computer Vision Winter Workshop, pp. 43–50 (February 2014)Google Scholar
  8. 8.
    Ojala, T., Pietikäinen, M., Harwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Computer Vision and Image Processing, vol. 1, pp. 582–585 (October 1994)Google Scholar
  9. 9.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Gonzalez-Diaz, R., Kropatsch, W., Cerman, M., Lamar, J.: Characterizing configurations of critical points through lbp. In: SYNASC 2014 Workshop on Computational Topology in Image Context (2014)Google Scholar
  11. 11.
    EL Khoury, R., Vandeborre, J.P., Daoudi, M.: 3D mesh Reeb graph computation using commute-time and diffusion distances. In: Proceedings SPIE: Three-Dimensional Image Processing (3DIP) and Applications II, vol. 8290, pp. 82900H–82900H–10 (2012)Google Scholar
  12. 12.
    Bott, R.: Lectures on Morse theory, old and new. Bulletin of the American Mathematical Society 7(2), 331–358 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Doraiswamy, H., Natarajan, V.: Efficient algorithms for computing Reeb graphs. Computational Geometry 42(6-7), 606–616 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Lee, D.T.: Medial axis transformation of a planar shape. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-4(4), 363–369 (1982)Google Scholar
  15. 15.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical geometry of non-rigid shapes. Monographs in Computer Science. Springer New York (2009)Google Scholar
  16. 16.
    Sebastian, T., Klein, P., Kimia, B.: Recognition of shapes by editing shock graphs. In: IEEE International Conference on Computer Vision, vol. 1, p. 755. IEEE Computer Society (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Pattern Recognition and Image Processing Group Institute of Computer Graphics and AlgorithmsVienna University of TechnologyViennaAustria

Personalised recommendations