Advertisement

Density Based Cluster Extension and Dominant Sets Clustering

  • Jian HouEmail author
  • Chunshi Sha
  • Xu E
  • Qi Xia
  • Naiming Qi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9069)

Abstract

With the pairwise data similarity matrix as input, dominant sets clustering has been shown to be a promising clustering approach with some nice properties. However, its clustering results are found to be influenced by the similarity parameter used in building the similarity matrix. While histogram equalization transformation of the similarity matrices removes this influence effectively, this transformation causes over-segmentation in the clustering results. In this paper we present a density based cluster extension algorithm to solve the over-segmentation problem. Specifically, we determine the density threshold based on the minimum possible density inside the dominant sets and then add new members into clusters if the density requirement is satisfied. Our algorithm is shown to perform better than the original dominant sets algorithm and also some other state-of-the-art clustering algorithms in data clustering and image segmentation experiments.

Keywords

Dominant set Clustering Over-segmentation Cluster extension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brendan, J.F., Delbert, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bulo, S.R., Pelillo, M., Bomze, I.M.: Graph-based quadratic optimization: A fast evolutionary approach. Computer Vision and Image Understanding 115(7), 984–995 (2011)CrossRefGoogle Scholar
  3. 3.
    Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recognition 41(1), 191–203 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Daszykowski, M., Walczak, B., Massart, D.L.: Looking for natural patterns in data: Part 1. density-based approach. Chemometrics and Intelligent Laboratory Systems 56(2), 83–92 (2001)CrossRefGoogle Scholar
  5. 5.
    Dueck, D., Frey, B.J.: Non-metric affinity propagation for unsupervised image categorization. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  6. 6.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.W.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)Google Scholar
  7. 7.
    Fowlkes, C., Belongie, S., Fan, C., Malik, J.: Spectral grouping using the nystrom method. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 214–225 (2004)CrossRefGoogle Scholar
  8. 8.
    Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Transactions on Knowledge Discovery from Data 1(1), 1–30 (2007)CrossRefGoogle Scholar
  9. 9.
    Givoni, I.E., Chung, C., Frey, B.J.: Hierarchical affinity propagation. In: Conference on Uncertainty in Artificial Intelligence, pp. 238–246 (2009)Google Scholar
  10. 10.
    Givoni, I.E., Frey, B.J.: Semi-supervised affinity propagation with instance-level constraints. In: International Conference on Artificial Intelligence and Statistics, pp. 161–168 (2009)Google Scholar
  11. 11.
    Hamid, R., Maddi, S., Johnson, A.Y., Bobick, A.F., Essa, I.A., Isbell, C.: A novel sequence representation for unsupervised analysis of human activities. Artificial Intelligence 173, 1221–1244 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hou, J., Xu, E., Chi, L., Xia, Q., Qi, N.M.: Dset++: a robust clustering algorithm. In: International Conference on Image Processing, pp. 3795–3799 (2013)Google Scholar
  13. 13.
    Hou, J., Pelillo, M.: A simple feature combination method based on dominant sets. Pattern Recognition 46(11), 3129–3139 (2013)CrossRefGoogle Scholar
  14. 14.
    Niu, D., Dy, J.G., Jordan, M.I.: Dimensionality reduction for spectral clustering. In: International Conference on Artificial Intelligence and Statistics, pp. 552–560 (2011)Google Scholar
  15. 15.
    Pavan, M., Pelillo, M.: A graph-theoretic approach to clustering and segmentation. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 145–152 (2003)Google Scholar
  16. 16.
    Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 167–172 (2007)CrossRefGoogle Scholar
  17. 17.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 167–172 (2000)Google Scholar
  18. 18.
    Torsello, A., Bulo, S.R., Pelillo, M.: Grouping with asymmetric affinities: a game-theoretic perspective. In: IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 292–299 (2006)Google Scholar
  19. 19.
    Torsello, A., Bulo, S.R., Pelillo, M.: Beyond partitions: Allowing overlapping groups in pairwise clustering. In: International Conference on Pattern Recognition, pp. 1–4 (2008)Google Scholar
  20. 20.
    Veenman, C.J., Reinders, M., Backer, E.: A maximum variance cluster algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9), 1273–1280 (2002)CrossRefGoogle Scholar
  21. 21.
    Yan, D., Huang, L., Jordan, M.I.: Fast approximate spectral clustering. In: International Conference on Knowledge Discovery and Data Mining, pp. 907–916 (2009)Google Scholar
  22. 22.
    Yang, X.W., Liu, H.R., Laecki, L.J.: Contour-based object detection as dominant set computation. Pattern Recognition 45, 1927–1936 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jian Hou
    • 1
    Email author
  • Chunshi Sha
    • 2
  • Xu E
    • 1
  • Qi Xia
    • 3
  • Naiming Qi
    • 3
  1. 1.School of Information Science and TechnologyBohai UniversityJinzhouChina
  2. 2.School of EngineeringBohai UniversityJinzhouChina
  3. 3.School of AstronauticsHarbin Institute of TechnologyHarbinChina

Personalised recommendations