A Quantum Jensen-Shannon Graph Kernel Using Discrete-Time Quantum Walks

  • Lu Bai
  • Luca Rossi
  • Peng Ren
  • Zhihong Zhang
  • Edwin R. Hancock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9069)


In this paper, we develop a new graph kernel by using the quantum Jensen-Shannon divergence and the discrete-time quantum walk. To this end, we commence by performing a discrete-time quantum walk to compute a density matrix over each graph being compared. For a pair of graphs, we compare the mixed quantum states represented by their density matrices using the quantum Jensen-Shannon divergence. With the density matrices for a pair of graphs to hand, the quantum graph kernel between the pair of graphs is defined by exponentiating the negative quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets, and demonstrate the effectiveness of the new kernel.


Density Matrix Line Graph Original Graph Quantum Walk Graph Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)Google Scholar
  2. 2.
    Haussler, D.: Convolution kernels on discrete structures. In: Technical Report UCS-CRL-99-10, Santa Cruz, CA, USA (1999)Google Scholar
  3. 3.
    Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proceedings of ICML, pp. 321–328 (2003)Google Scholar
  4. 4.
    Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Proceedings of the IEEE International Conference on Data Mining, pp. 74–81 (2005)Google Scholar
  5. 5.
    Aziz, F., Wilson, R.C., Hancock, E.R.: Backtrackless walks on a graph. IEEE Transactions on Neural Networks and Learning Systems 24, 977–989 (2013)CrossRefGoogle Scholar
  6. 6.
    Ren, P., Wilson, R.C., Hancock, E.R.: Graph characterization via ihara coefficients. IEEE Transactions on Neural Networks 22, 233–245 (2011)CrossRefGoogle Scholar
  7. 7.
    Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 1, 1–48 (2010)Google Scholar
  8. 8.
    Harchaoui, Z., Bach, F.: Image classification with segmentation graph kernels. In: Proceedings of CVPR (2007)Google Scholar
  9. 9.
    Bach, F.R.: Graph kernels between point clouds. In: Proceedings of ICML, pp. 25–32 (2008)Google Scholar
  10. 10.
    Bai, L., Ren, P., Hancock, E.R.: A hypergraph kernel from isomorphism tests. In: Proceedings of ICPR, pp. 3880–3885 (2014)Google Scholar
  11. 11.
    Bai, L., Hancock, E.R.: Graph kernels from the jensen-shannon divergence. Journal of Mathematical Imaging and Vision 47, 60–69 (2013)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bai, L., Hancock, E.R.: Graph clustering using the jensen-shannon kernel. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 394–401. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Bai, L., Hancock, E.R., Ren, P.: Jensen-shannon graph kernel using information functionals. In: Proceedings of ICPR, pp. 2877–2880 (2012)Google Scholar
  14. 14.
    Bai, L., Rossi, L., Torsello, A., Hancock, E.R.: A quantum jensen-shannon graph kernel for unattributed graphs. Pattern Recognition 48(2), 344–355 (2015)CrossRefGoogle Scholar
  15. 15.
    Bai, L., Hancock, E.R., Torsello, A., Rossi, L.: A quantum jensen-shannon graph kernel using the continuous-time quantum walk. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 121–131. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Rossi, L., Torsello, A., Hancock, E.R.: A continuous-time quantum walk kernel for unattributed graphs. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 101–110. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Lamberti, P., Majtey, A., Borras, A., Casas, M., Plastino, A.: Metric character of the quantum jensen-shannon divergence. Physical Review A 77, 052311 (2008)Google Scholar
  18. 18.
    Majtey, A., Lamberti, P., Prato, D.: Jensen-shannon divergence as a measure of distinguishability between mixed quantum states. Physical Review A 72, 052310 (2005)Google Scholar
  19. 19.
    Farhi, E., Gutmann, S.: Quantum computation and decision trees. Physical Review A 58, 915 (1998)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Ren, P., Aleksic, T., Emms, D., Wilson, R.C., Hancock, E.R.: Quantum walks, ihara zeta functions and cospectrality in regular graphs. Quantum Information Process 10, 405–417 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Emms, D., Severini, S., Wilson, R.C., Hancock, E.R.: Coined quantum walks lift the cospectrality of graphs and trees. Pattern Recognition 42, 1988–2002 (2009)CrossRefzbMATHGoogle Scholar
  22. 22.
    L.G.: A fast quantum mechanical algorithm for database search. In: Proceedings of ACM Symposium on the Theory of Computation, pp. 212–219 (1996)Google Scholar
  23. 23.
    Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge university press (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lu Bai
    • 1
    • 2
  • Luca Rossi
    • 3
  • Peng Ren
    • 4
  • Zhihong Zhang
    • 5
  • Edwin R. Hancock
    • 2
  1. 1.School of InformationCentral University of Finance and EconomicsBeijingChina
  2. 2.Department of Computer ScienceUniversity of YorkYorkUK
  3. 3.School of Computer ScienceUniversity of BirminghamBirminghamUK
  4. 4.College of Information and Control EngineeringChina University of Petroleum (Huadong)QingdaoP.R. China
  5. 5.Software schoolXiamen UniversityFujianChina

Personalised recommendations