Advertisement

On the Influence of Node Centralities on Graph Edit Distance for Graph Classification

  • Xavier CortésEmail author
  • Francesc Serratosa
  • Carlos F. Moreno-García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9069)

Abstract

Classical graph approaches for pattern recognition applications rely on computing distances between graphs in the graph domain. That is, the distance between two graphs is obtained by directly optimizing some objective function which consider node and edge attributes. Bipartite Graph Matching was first published in a journal in 2009 and new versions have appeared to speed up its runtime such as the Fast Bipartite Graph Matching. This algorithm is based on defining a cost matrix between all nodes of both graphs and solving the node correspondence through a linear assignment method. To construct the matrix, several local structures can be defined from the simplest one (only the node) to the most complex (a whole clique or eigenvector structure). In this paper, we propose five different options and we show that the type of local structure and the distance defined between these structures is relevant for graph classification.

Keywords

Graph edit distance Bipartite graph matching Fast bipartite graph matching Levenshtein distance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sanfeliu, A., Alquézar, R., Andrade, J., Climent, J., Serratosa, F., Vergés, J.: Graph-based Representations and Techniques for Image Processing and Image Analysis. Pattern Recognition 35(3), 639–650 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty Years Of Graph Matching In Pattern Recognition. IJPRAI 18(3), 265–298 (2004)Google Scholar
  3. 3.
    Vento, M.: A One Hour Trip in the World of Graphs, Looking at the Papers of the Last Ten Years. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 1–10. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Hancock, E.R., Wilson, R.C.: Pattern analysis with graphs: Parallel work at Bern and York. Pattern Recognition Letters 33(7), 833–841 (2012)CrossRefGoogle Scholar
  5. 5.
    Serratosa, F., Cortés, X., Solé-Ribalta, A.: Component Retrieval based on a Database of Graphs for Hand-Written Electronic-Scheme Digitalisation. Expert Systems With Applications, ESWA 40, 2493–2502 (2013)CrossRefGoogle Scholar
  6. 6.
    Solé, A., Serratosa, F., Sanfeliu, A.: On the Graph Edit Distance cost: Properties and Applications. International Journal of Pattern Recognition and Artificial Intelligence 26(5) (2012)Google Scholar
  7. 7.
    Serratosa, F., Alquézar, R., Sanfeliu, A.: Estimating the Joint Probability Distribution of Random Vertices and Arcs by Means of Second-Order Random Graphs. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 252–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Ferrer, M., Valveny, E., Serratosa, F.: Median graphs: A genetic approach based on new theoretical properties. Pattern Recognition 42(9), 2003–2012 (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Ferrer, M., Valveny, E., Serratosa, F.: Median graph: A new exact algorithm using a distance based on the maximum common subgraph. Pattern Recognition Letters 30(5), 579–588 (2009)CrossRefGoogle Scholar
  10. 10.
    Serratosa, F., Alquézar, R., Sanfeliu, A.: Estimating the Joint Probability Distribution of Random Vertices and Arcs by Means of Second-Order Random Graphs. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 252–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Serratosa, F., Sanfeliu, A.: Function-Described Graphs applied to 3D object recognition. In: Del Bimbo, A. (ed.) ICIAP 1997. LNCS, vol. 1310, pp. 701–708. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Serratosa, F.: Fast Computation of Bipartite Graph Matching. Pattern Recognition Letters 45, 244–250 (2014)CrossRefGoogle Scholar
  13. 13.
    Serratosa, F.: Speeding up Fast Bipartite Graph Matching trough a new cost matrix, International Journal of Pattern Recognition and Artificial Intelligence 29(2) (2015)Google Scholar
  14. 14.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vision Comput. 27(7), 950–959 (2009)CrossRefGoogle Scholar
  15. 15.
    Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society for Industrial & Applied Mathematics 5, 32–38 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Jonker, R., Volgenant, T.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38, 325–340 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Cortés, X., Serratosa, F.: An Interactive Method for the Image Alignment problem based on Partially Supervised Correspondence. Expert Systems With Applications 42(1), 179–192 (2015)CrossRefGoogle Scholar
  18. 18.
    Serratosa, F., Cortés, X.: Interactive Graph-Matching using Active Query Strategies. Pattern Recognition 48, 1360–1369 (2015)CrossRefGoogle Scholar
  19. 19.
    Riesen, K., Bunke, H., Fischer, A.: Improving Graph Edit Distance Approximation by Centrality Measures. In: International Congress on Pattern Recognition (2014)Google Scholar
  20. 20.
    Cortés, X., Serratosa, F.: Learning Graph-Matching Edit-Costs based on the Optimality of the Oracle’s Node Correspondences. Pattern Recognition Letters (2015)Google Scholar
  21. 21.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady, Cybernetics and Control Theory 10, 707–710 (1966)MathSciNetGoogle Scholar
  22. 22.
    Peris, G., Marzal, A.: Fast Cyclic Edit Distance Computation with Weighted Edit Costs in Classification. In: ICPR 2002, vol. 4, pp. 184–187 (2002)Google Scholar
  23. 23.
    Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xavier Cortés
    • 1
    Email author
  • Francesc Serratosa
    • 1
  • Carlos F. Moreno-García
    • 1
  1. 1.Universitat Rovira i VirgiliTarragonaSpain

Personalised recommendations