Advertisement

Attributed Relational Graph Matching with Sparse Relaxation and Bistochastic Normalization

  • Bo JiangEmail author
  • Jin Tang
  • Bin Luo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9069)

Abstract

Attributed relational graph (ARG) matching problem can usually be formulated as an Integer Quadratic Programming (IQP) problem. Since it is NP-hard, relaxation methods are required. In this paper, we propose a new relaxation method, called Bistochastic Preserving Sparse Relaxation Matching (BPSRM), for ARG matching problem. The main benefit of BPSRM is that the mapping constraints involving both discrete and bistochastic constraint can be well incorporated in BPSRM optimization. Thus, it can generate an approximate binary solution with one-to-one mapping constraint for ARG matching problem. Experimental results show the effectiveness of the proposed method.

Keywords

Attributed relational graph Graph matching Bistochastic normalization Sparse model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI 18(3), 265–298 (2004)Google Scholar
  2. 2.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. on PAMI 18(4), 377–388 (1996)CrossRefGoogle Scholar
  3. 3.
    Leordeanu, M., Hebert, M.: A spectral technique for correspondence problem using pairwise constraints. In: ICCV, pp. 1482–1489 (2005)Google Scholar
  4. 4.
    Cour, M., Srinivasan, P., Shi, J.: Balanced graph matching. In: NIPS, pp. 313–320 (2006)Google Scholar
  5. 5.
    Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected fixed point method for graph macthing and map inference. In: NIPS, pp. 1114–1122 (2009)Google Scholar
  6. 6.
    Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 492–505. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Zhou, F., la Torre, F.D.: Factorized graph matching. In: CVPR, pp. 127–134 (2012)Google Scholar
  8. 8.
    van Wyk, B.J., van Wyk, M.A.: A pocs-based graph matching algorithm. IEEE Trans. on PAMI 16(11), 1526–1530 (2004)Google Scholar
  9. 9.
    Albarelli, A., Bulo, S.R., Torsello, A., Pelillo, M.: Matching as a non-coorperative game. In: ICCV, pp. 1319–1326 (2009)Google Scholar
  10. 10.
    Albarelli, A., Rodolà, E., Torsello, A.: Imposing semi-local geometric constraints for accurate correspondences selection in structure from motion: a game-theoretic perspective. International Journal of Computer Vision 97(1), 36–53 (2012)CrossRefGoogle Scholar
  11. 11.
    Liu, H., Yan, S.: Common visual pattern discovery via spatially coherent correspondences. In: CVPR, pp. 1609–1616 (2010)Google Scholar
  12. 12.
    Rodolà, E., Bronstein, A.M., Albarelli, A., Bergamasco, F., Torsello, A.: A game-theoretic approach to deformable shape matching. In: CVPR, pp. 182–189 (2012)Google Scholar
  13. 13.
    Donoho, D.: Compressed sensing. In: Technical Report, Stanford University (2006)Google Scholar
  14. 14.
    Rodolà, E., Torsello, A., Harada, T., Kuniyoshi, Y., Cremers, D.: Elastic net constraints for shape matching. In: ICCV, pp. 1169–1176 (2013)Google Scholar
  15. 15.
    Jiang, B., Zhao, H.F., Tang, J., Luo, B.: A sparse nonnegative matrix factorization technique for graph matching problem. Pattern Recognition 47(1), 736–747 (2014)CrossRefGoogle Scholar
  16. 16.
    Sinkhorn, R.: A relationship between arbitray positive matrices and doubly stochastic matrices. Ann. Mach. Statistics 35(2), 876–879 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Ding, C., Li, T., Jordan, M.I.: Nonnegative matrix factorization for combinatorial optimization: Spectral clustering, graph matching and clique finding. In: ICDM, pp. 183–192 (2008)Google Scholar
  18. 18.
    Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph matching. IEEE Trans. on PAMI 31(6), 1048–1058 (2009)CrossRefGoogle Scholar
  19. 19.
    Ng, E.S., Kingsbury, N.G.: Matching of interest point groups with pairwise spatial constraints. In: ICIP, pp. 2693–2696 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyAnhui UniversityHefeiChina

Personalised recommendations