Advertisement

Multi-layer Tree Matching Using HSTs

  • Yusuf OsmanlıoğluEmail author
  • Ali Shokoufandeh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9069)

Abstract

Matching two images by mapping image features play a fundamental role in many computer vision task. Due to noisy nature of feature extraction, establishing a one-to-one matching of features may not always be possible. Although many-to-many matching techniques establishes the desired multi map between features, they ignore the spatial structure of the nodes. In this paper, we propose a novel technique that utilizes both the individual node features and the clustering information of nodes for image matching where image features are represented as hierarchically well-separated trees (HSTs). Our method uses the fact that non-leaf nodes of an HST represent a constellation of nodes in the original image and obtains a matching by finding a mapping between non-leaf nodes among the two HSTs. Empirical evaluation of the method on an extensive set of recognition tests shows the robustness and efficiency of the overall approach.

Keywords

Hierarchically well-separated tree HST Metric embedding Graph matching Tree matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almohamad, H.A., Duffuaa, S.O.: A linear programming approach for the weighted graph matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(5), 522–525 (1993)CrossRefGoogle Scholar
  2. 2.
    Ambauen, R., Fischer, S., Bunke, H.: Graph edit distance with node splitting and merging, and its application to diatom identification. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 95–106. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, FOCS 1996, p. 184. IEEE Computer Society, Washington, DC (1996)Google Scholar
  4. 4.
    Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 161–168. ACM, New York (1998)Google Scholar
  5. 5.
    Berretti, S., Del Bimbo, A., Pala, P.: A graph edit distance based on node merging. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 464–472. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Bunke, H.: Error correcting graph matching: On the influence of the underlying cost function. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(9), 917–922 (1999)CrossRefGoogle Scholar
  7. 7.
    Caelli, T., Kosinov, S.: An eigenspace projection clustering method for inexact graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(4), 515–519 (2004)CrossRefGoogle Scholar
  8. 8.
    Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a finite metric by a small number of tree metrics. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS 1998, pp. 379–388. IEEE Computer Society, Washington, DC (1998)Google Scholar
  9. 9.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM (1971)Google Scholar
  10. 10.
    Fatih Demirci, M., Osmanlioglu, Y., Shokoufandeh, A., Dickinson, S.: Efficient many-to-many feature matching under the l1 norm. Comput. Vis. Image Underst. 115(7), 976–983 (2011)CrossRefGoogle Scholar
  11. 11.
    Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 448–455. ACM, New York (2003)Google Scholar
  12. 12.
    Richard, M.: Karp. A 2k-competitive algorithm for the circle (August 5, 1989) (manuscript)Google Scholar
  13. 13.
    Kleinberg, J., Tardos, É.: Approximation algorithms for classification problems with pairwise relationships: Metric labeling and markov random fields. J. ACM 49(5), 616–639 (2002)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Konjevod, G., Ravi, R., Sibel Salman, F.: On approximating planar metrics by tree metrics. Information Processing Letters 80(4), 213–219 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  16. 16.
    Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (coil-20). Technical report, Technical Report CUCS-005-96 (1996)Google Scholar
  17. 17.
    Shapiro, L.G., Haralick, R.M.: Structural descriptions and inexact matching. IEEE Transactions on Pattern Analysis and Machine Intelligence (5), 504–519 (1981)Google Scholar
  18. 18.
    Wildman, J., Osmanlioglu, Y., Weber, S., Shokoufandeh, A.: Delay minimizing user association in cellular networks via hierarchically well-separated trees. arXiv preprint arXiv:1501.02419 (2015)Google Scholar
  19. 19.
    Williams, M.L., Wilson, R.C., Hancock, E.R.: Deterministic search for relational graph matching. Pattern Recognition 32(7), 1255–1271 (1999)CrossRefGoogle Scholar
  20. 20.
    Zaslavskiy, M., Bach, F., Vert, J.-P.: Many-to-many graph matching: A continuous relaxation approach. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 515–530. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceDrexel UniversityPhiladelphiaUSA

Personalised recommendations