Advertisement

Data Graph Formulation as the Minimum-Weight Maximum-Entropy Problem

  • Samuel de SousaEmail author
  • Walter G. Kropatsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9069)

Abstract

Consider a point-set coming from an object which was sampled using a digital sensor (depth range, camera, etc). We are interested in finding a graph that would represent that point-set according to some properties. Such a representation would allow us to match two objects (graphs) by exploiting topological properties instead of solely relying on geometrical properties. The Delaunay triangulation is a common out off-the-shelf strategy to triangulate a point-set and it is used by many researchers as the standard way to create the so called data-graph and despite its positive properties, there are also some drawbacks. We are interested in generating a graph with the following properties: the graph is (i) as unique as possible, (ii) and as discriminative as possible regarding the degree distribution. We pose a combinatorial optimization problem (Min-Weight Max-Entropy Problem) to build such a graph by minimizing the total weight cost of the edges and at the same time maximizing the entropy of the degree distribution. Our optimization approach is based on Dynamic Programming (DP) and yields a polynomial time algorithm.

Keywords

Data-graph Graph realization Combinatorial optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Conrad, K.: Probability distributions and maximum entropy (2005), http://www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf
  2. 2.
    Cross, A.D.J., Hancock, E.R.: Graph matching with a dual-step em algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1236–1253 (1998), ISSN 0162-8828Google Scholar
  3. 3.
    de Sousa, S., Kropatsch, W.G.: Graph-based point drift: Graph centrality on the registration of point-sets. Pattern Recognition 48(2), 368–379 (2015), ISSN 0031-3203Google Scholar
  4. 4.
    Delaunay, B.N.: Sur la sphère vide. Bulletin of Academy of Sciences of the USSR, 793–800 (1934)Google Scholar
  5. 5.
    Dickinson, P.J., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique node labels. Pattern Analysis and Applications 7(3), 243–254 (2004), ISSN 1433-7541Google Scholar
  6. 6.
    Erdös, T., Gallai, P.: Gráfok előírt fokszámú pontokkal. Matematikai Lapok 11, 264–274 (1960)Google Scholar
  7. 7.
    Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Systematic Biology 18(3), 259–278 (1969)Google Scholar
  8. 8.
    Hakimi, S.: On realizability of a set of integers as degrees of the vertices of a linear graph. i. Journal of the Society for Industrial and Applied Mathematics 10(3), 496–506 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Havel, V.: Poznámka o existenci konečných graf•367u. Časopis Pro Pěstování Matematiky 080(4), 477–480 (1955)MathSciNetGoogle Scholar
  10. 10.
    Kocay, W., Kreher, D.L.: Graphs, Algorithms, and Optimization. Discrete Mathematics and Its Applications. Taylor & Francis (2004) ISBN 9780203489055Google Scholar
  11. 11.
    Lian, W., Zhang, L.: Rotation invariant non-rigid shape matching in cluttered scenes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 506–518. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Luo, B., Hancock, E.R.: Iterative procrustes alignment with the {EM} algorithm. Image and Vision Computing 20(5-6), 377–396 (2002), ISSN 0262-8856Google Scholar
  13. 13.
    Ohrhallinger, S., Mudur, S.: An efficient algorithm for determining an aesthetic shape connecting unorganized 2d points. Computer Graphics Forum 32(8), 72–88 (2013), ISSN 1467-8659Google Scholar
  14. 14.
    Reeb, G.: Sur les points singuliers d’une forme de pfaff complétement intégrable ou d’une fonction numérique. C. R. Acad. Sci. Paris 222, 847–849 (1946)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Pattern Recognition and Image Processing GroupVienna University of TechnologyViennaAustria

Personalised recommendations