Advertisement

A Graph Database Repository and Performance Evaluation Metrics for Graph Edit Distance

  • Zeina Abu-AishehEmail author
  • Romain Raveaux
  • Jean-Yves Ramel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9069)

Abstract

Graph edit distance (GED) is an error tolerant graph matching paradigm whose methods are often evaluated in a classification context and less deeply assessed in terms of the accuracy of the found solution. To evaluate the accuracy of GED methods, low level information is required not only at the classification level but also at the matching level. Most of the publicly available repositories with associated ground truths are dedicated to evaluating graph classification or exact graph matching methods and so the matching correspondences as well as the distance between each pair of graphs are not directly evaluated. This paper consists of two parts. First, we provide a graph database repository annotated with low level information like graph edit distances and their matching correspondences. Second, we propose a set of performance evaluation metrics to assess the performance of GED methods.

Keywords

Graph edit distance Performance evaluation metrics Matching correspondence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vento, M.: A long trip in the charming world of graphs for pattern recognition. Pattern Recognition 48(2), 291–301 (2015)CrossRefGoogle Scholar
  2. 2.
    Sorlin, S., Solnon, C., Michel Jolion, J.: A generic graph distance measure based on multivalent matchings (2007)Google Scholar
  3. 3.
    Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on S, M, and C 13, 353–362 (1983)zbMATHGoogle Scholar
  4. 4.
    Bunke, H.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1(4), 245–253 (1983)CrossRefzbMATHGoogle Scholar
  5. 5.
    Fankhauser, S., Riesen, K., Bunke, H.: Speeding up graph edit distance computation through fast bipartite matching. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 102–111. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Transactions on PA and MI 28(8), 1200–1214 (2006)CrossRefGoogle Scholar
  7. 7.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image and Vision Computing 28, 950–959 (2009)CrossRefGoogle Scholar
  8. 8.
    Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: A fast matching algorithm for graph-based handwriting recognition. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 194–203. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Xu, K.B.: Benchmarks with hidden optimum solutions for graph problems, http://www.nlsde.buaa.edu.cn/kexu/benchmarks/graph-benchmarks.htm
  11. 11.
    Cmu house and hotel datasets, http://vasc.ri.cmu.edu/idb/html/motion
  12. 12.
    A large database of graphs and its use for benchmarking graph isomorphism algorithms 24(8), 1067 – 1079 (2003)Google Scholar
  13. 13.
    Conte, D., et al.: Challenging complexity of maximum common subgraph detection algorithms 11(1), 99–143 (2007)Google Scholar
  14. 14.
    Foggia, P., et al.: A performance comparison of five algorithms for graph isomorphism. In: IAPR TC-15, pp. 188–199 (2001)Google Scholar
  15. 15.
    Carletti, V., Foggia, P., Vento, M.: Performance comparison of five exact graph matching algorithms on biological databases. In: Petrosino, A., Maddalena, L., Pala, P. (eds.) ICIAP 2013. LNCS, vol. 8158, pp. 409–417. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Riesen, K., Bunke, H.: Graph Classification and Clustering Based on Vector Space Embedding (2010)Google Scholar
  18. 18.
    Kazius, J., et al.: Derivation and validation of toxicophores for mutagenicity prediction. Journal of Medicinal Chemistry 48(1), 312–320 (2005)CrossRefGoogle Scholar
  19. 19.
    Wagner, et al.: The string-to-string correction problem 21(1), 168–173 (1974)Google Scholar
  20. 20.
    Zhou, F., De la Torre, F.: Factorized graph matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)Google Scholar
  21. 21.
    Neuhaus, M., et al.: Fast suboptimal algorithms for the computation of graph edit distance. Structural and Syntactic Pattern Recognition, 163–172 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zeina Abu-Aisheh
    • 1
    Email author
  • Romain Raveaux
    • 1
  • Jean-Yves Ramel
    • 1
  1. 1.Laboratoire d’Informatique (LI)Université François RabelaisToursFrance

Personalised recommendations