GEM++: A Tool for Solving Substitution-Tolerant Subgraph Isomorphism

  • Julien LerougeEmail author
  • Pierre Le Bodic
  • Pierre Héroux
  • Sébastien Adam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9069)


The substitution-tolerant subgraph isomorphism is a particular error-tolerant subgraph matching that allows label substitutions for both vertices and edges. Such a matching is often required in pattern recognition applications since graphs extracted from images are generally labeled with features vectors computed from raw data which are naturally subject to noise. This paper describes an extended version of a Binary Linear Program (BLP) for solving this class of graph matching problem. The paper also presents GEM++, a software framework that implements the BLP and that we have made available for the research community. GEM++ allows the processing of different sub-problems (induced isomorphism or not, directed graphs or not) with complex labelling of vertices and edges. We also present some datasets available for evaluating future contributions in this field.


Binary linear programming Subgraph isomorphism Graph matching toolkit Graph datasets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance evaluation of the VF graph matching algorithm. In: Proc. of the Int’l Conf. on Image Analys. and Proc., pp. 1172–1177 (1999)Google Scholar
  2. 2.
    Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. IEEE Trans. on PAMI 26(10), 1367–1372 (2004)CrossRefGoogle Scholar
  3. 3.
    Danna, E., Fenelon, M., Gu, Z., Wunderling, R.: Generating multiple solutions for mixed integer programming problems. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 280–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    De Santo, M., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its use for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett. 24(8), 1067–1079 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Erdös, P., Rényi, A.: On random graphs. Public. Mathemat. 6, 290–297 (1959)zbMATHGoogle Scholar
  6. 6.
    Foggia, P., Sansone, C., Vento, M.: A database of graphs for isomorphism and sub-graph isomorphism benchmarking. In: Proc. Third IAPR TC-15 Int’l Workshop Graph Based Representations, pp. 176–187 (2001)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman & Co. (1979)Google Scholar
  8. 8.
    Ghahraman, D.E., Wong, A.K.C., Au, T.: Graph optimal monomorphism algorithms. IEEE Transactions on System, Man and Cybernetics 10, 181–188 (1980)CrossRefzbMATHGoogle Scholar
  9. 9.
    Le Bodic, P., Héroux, P., Adam, S., Lecourtier, Y.: An integer linear program for substitution-tolerant subgraph isomorphism and its use for symbol spotting in technical drawings. Pattern Recognition 45(12), 4214–4224 (2012)CrossRefGoogle Scholar
  10. 10.
    Le Bodic, P., Locteau, H., Adam, S., Héroux, P., Lecourtier, Y., Knippel, A.: Symbol detection using region adjacency graphs and integer linear programming. In: Proc. of the Int’l Conf. on Doc. Analys. and Recog., pp. 1320–1324 (2009)Google Scholar
  11. 11.
    Solnon, C.: Alldifferent-based filtering for subgraph isomorphism. Artificial Intelligence 174(12-13), 850–864 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Wong, A.K.C., You, M., Chan, S.C.: An algorithm for graph optimal monomorphism. IEEE Transactions on System, Man and Cybernetics 20(3), 628–638 (1990)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Julien Lerouge
    • 1
    Email author
  • Pierre Le Bodic
    • 2
  • Pierre Héroux
    • 1
  • Sébastien Adam
    • 1
  1. 1.LITIS EA 4108, BP 12University of RouenSaint-Etienne du RouvrayFrance
  2. 2.H. Milton Stewart School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations