Skip to main content

Pathwise Sensitivity Analysis in Transient Regimes

  • Chapter
  • First Online:
Stochastic Equations for Complex Systems

Part of the book series: Mathematical Engineering ((MATHENGIN))

Abstract

The instantaneous relative entropy (IRE) and the corresponding instantaneous Fisher information matrix (IFIM) for transient stochastic processes are presented in this paper. These novel tools for sensitivity analysis of stochastic models serve as an extension of the well known relative entropy rate (RER) and the corresponding Fisher information matrix (FIM) that apply to stationary processes. Three cases are studied here, discrete-time Markov chains, continuous-time Markov chains and stochastic differential equations. A biological reaction network is presented as a demonstration numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis. The primer. Wiley, New York

    MATH  Google Scholar 

  2. DiStefano III J (2013) Dynamic systems biology modeling and simulation. Elsevier, New York

    Google Scholar 

  3. Glynn PW (1990) Likelihood ratio gradient estimation for stochastic systems. Commun ACM 33(10):75–84

    Article  Google Scholar 

  4. Nakayama M, Goyal A, Glynn PW (1994) Likelihood ratio sensitivity analysis for Markovian models of highly dependable systems. Stoch Models 10:701–717

    Google Scholar 

  5. Plyasunov S, Arkin AP (2007) Efficient stochastic sensitivity analysis of discrete event systems. J Comput Phys 221:724–738

    Article  MATH  MathSciNet  Google Scholar 

  6. Kim D, Debusschere BJ, Najm HN (2007) Spectral methods for parametric sensitivity in stochastic dynamical systems. Biophys J 92:379–393

    Article  Google Scholar 

  7. Rathinam M, Sheppard PW, Khammash M (2010) Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks. J Chem Phys 132(1–13):034103

    Article  Google Scholar 

  8. Anderson David F (2012) An efficient finite difference method for parameter sensitivities of continuous-time Markov chains. SIAM J Numer Anal 50(5):2237–2258

    Article  MATH  MathSciNet  Google Scholar 

  9. Sheppard PW, Rathinam M, Khammash M (2012) A pathwise derivative approach to the computation of parameter sensitivities in discrete stochastic chemical systems. J Chem Phys 136(3):034115

    Article  Google Scholar 

  10. Meskine H, Matera S, Scheffler M, Reuter K, Metiu H (2009) Examination of the concept of degree of rate control by first-principles kinetic Monte Carlo simulations. Surf Sci 603(10–12):1724–1730

    Article  Google Scholar 

  11. Baiesi M, Maes C, Wynants B (2009) Nonequilibrium linear response for Markov dynamics I: jump processes and overdamped diffusions. J Stat Phys 137:1094

    Article  MATH  MathSciNet  Google Scholar 

  12. Baiesi M, Maes C, Boksenbojm E, Wynants B (2010) Nonequilibrium linear response for markov dynamics, II: Inertial dynamics. J Stat Phys 139:492

    Google Scholar 

  13. Pantazis Y, Katsoulakis M (2013) A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics. J Chem Phys 138(5):054115

    Article  Google Scholar 

  14. Dupuis P, Katsoulakis MA, Pantazis Y, Plecháč P Sesnitivity bounds and error estimates for stochastic models (in Preparation)

    Google Scholar 

  15. Arampatzis G, Pantazis Y, Katsoulakis MA Accelerated sensitivity analysis in high-dimensional stochastic reaction networks. Submitted to PLoS ONE

    Google Scholar 

  16. Kullback S (1959) Information theory and statistics. Wiley, New York

    MATH  Google Scholar 

  17. Cover T, Thomas J (1991) Elements of information theory. Wiley, New York

    Book  MATH  Google Scholar 

  18. Kipnis C, Landim C (1999) Scaling limits of interacting particle systems. Springer, Berlin

    Book  MATH  Google Scholar 

  19. Avellaneda M, Friedman CA, Holmes R, Samperi DJ (1997) Calibrating volatility surfaces via relative-entropy minimization. Soc Sci Res Netw

    Google Scholar 

  20. Liu HB, Chen W, Sudjianto A (2006) Relative entropy based method for probabilistic sensitivity analysis in engineering design. J Mech Des 128:326–336

    Article  Google Scholar 

  21. Limnios N, Oprisan G (2001) Semi-Markov processes and reliability. Springer, Berlin

    Book  MATH  Google Scholar 

  22. Abramov RV, Grote MJ, Majda AJ (2005) Information theory and stochastics for multiscale nonlinear systems., CRM monograph series. American Mathematical Society, Providence

    Google Scholar 

  23. Liptser RS, Shiryaev AN (1977) Statistics of random processes: I & II. Springer, New York

    Book  Google Scholar 

  24. Oksendal B (2000) Stochastic differential equations: an introduction with applications. Springer, New York

    Google Scholar 

  25. Tsourtis A, Pantazis Y, Harmandaris V, Katsoulakis MA Parametric sensitivity analysis for stochastic molecular systems using information theoretic metrics. Submitted to J Chem Phys

    Google Scholar 

  26. Kholodenko BN, Demin OV, Moehren G, Hoek J (1999) Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem 274(42):30169–30181

    Article  Google Scholar 

  27. Moghal N, Sternberg PW (1999) Multiple positive and negative regulators of signaling by the EGF receptor. Curr Opin Cell Biol 11:190–196

    Article  Google Scholar 

  28. Hackel PO, Zwick E, Prenzel N, Ullrich A (1999) Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 11:184–189

    Article  Google Scholar 

  29. Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20:370–375

    Article  Google Scholar 

  30. Casella G, Berger RL (2002) Statistical inference. Duxbury advanced series in statistics and decision sciencesThomson Learning, London

    Google Scholar 

  31. Kay SM (1993) Fundamentals of statistical signal processing: estimation theory. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

Download references

Acknowledgments

The work of the authors was supported by the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract No. DE-SC0010723 and by the European Union (European Social Fund) and Greece (National Strategic Reference Framework), under the THALES Program, grant AMOSICSS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Arampatzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arampatzis, G., Katsoulakis, M.A., Pantazis, Y. (2015). Pathwise Sensitivity Analysis in Transient Regimes. In: Heinz, S., Bessaih, H. (eds) Stochastic Equations for Complex Systems. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-18206-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18206-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18205-6

  • Online ISBN: 978-3-319-18206-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics