Skip to main content

Strain Sensors in Wearable Devices

  • Chapter
Wearable Electronics Sensors

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 15))

Abstract

This chapter discusses the use of strain sensors in wearable devices. Strain sensors are used to monitor deformation under applied load. Various techniques for the fabrication of strain sensors are discussed and some example applications are presented. Special focus is placed on textile based and inkjet-printed strain sensors. Textile based strain sensors open new frontiers for wearable systems by integrating sensors into garments which can be used for extended periods of time. Inkjet printing along with conductive inkjet inks provides low cost, efficient, and rapid prototyping solution for implementation of strain sensors in wearable devices. Applications in the area of remote monitoring of physiological signals, vital signs, and human activity are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gibbs, P.T., Asada, H.H.: Wearable Conductive Fiber Sensors for Multi-Axis Human Joint Angle Measurements. J. NeuroEngineering Rehabil. 2, 7 (2005)

    Article  Google Scholar 

  2. Wang, P.T., King, C.E., Do, A.H., Nenadic, Z.: A durable, low-cost electro-goniometer for dynamic measurement of joint trajectories. Med. Eng. Phys. 33, 546–552 (2011)

    Article  Google Scholar 

  3. Cho, G., Jeong, K., Paik, M.J., Kwun, Y., Sung, M.: Performance Evalua-tion of Textile-Based Electrodes and Motion Sensors for Smart Clothing. IEEE Sens. J. 11, 3183–3193 (2011)

    Article  Google Scholar 

  4. Hoshino, R., Arita, D., Yonemoto, S., Taniguchi, R.: Real-Time Human Motion Analysis Based on Analysis of Silhouette Contour and Color Blob. In: Perales, F.J., Hancock, E.R. (eds.) AMDO 2002. LNCS, vol. 2492, pp. 92–103. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Koyanagi, M., Shino, K., Yoshimoto, Y., Inoue, S., Sato, M., Nakata, K.: Ef-fects of changes in skiing posture on the kinetics of the knee joint. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 14, 88–93 (2006)

    Article  Google Scholar 

  6. Tognetti, A., Lorussi, F., Bartalesi, R., Quaglini, S., Tesconi, M., Zupone, G., De Rossi, D.: Wearable kinesthetic system for capturing and classifying upper limb gesture in post-stroke rehabilitation. J. NeuroEngineering Rehabil. 2, 8 (2005)

    Article  Google Scholar 

  7. Scilingo, E.P., Lorussi, F., Mazzoldi, A., De Rossi, D.: Strain-sensing fab-rics for wearable kinaesthetic-like systems. IEEE Sens. J. 3, 460–467 (2003)

    Article  Google Scholar 

  8. Guo, L., Berglin, L., Wiklund, U., Mattila, H.: Design of a garment-based sensing system for breathing monitoring. Text Res. J. 83, 499–509 (2013)

    Article  Google Scholar 

  9. Tarchanidis, K.N., Lygouras, J.N.: Data glove with a force sensor. IEEE Trans. Instrum. Meas. 52, 984–989 (2003)

    Article  Google Scholar 

  10. Tognetti, A., Carbonaro, N., Zupone, G., De Rossi, D.: Characterization of a Novel Data Glove Based on Textile Integrated Sensors. In: 28th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., EMBS 2006, pp. 2510–2513 (2006)

    Google Scholar 

  11. Lorussi, F., Scilingo, E.P., Tesconi, M., Tognetti, A., De Rossi, D.: Strain sensing fabric for hand posture and gesture monitoring. IEEE Trans. Inf. Technol. Biomed. 9, 372–381 (2005)

    Article  Google Scholar 

  12. Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D.N., Hata, K.: A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011)

    Article  Google Scholar 

  13. Metcalf, C., Collie, S., Cranny, A., Hallett, G., James, C., Adams, J., Chappell, P., White, N., Burridge, J.: Fabric-based Strain Sensors for Measuring Movement in Wearable Telemonitoring Applications. The Institution of Engineering and Technology, pp. 1–4 (2009)

    Google Scholar 

  14. Parashkov, R., Becker, E., Riedl, T., Johannes, H., Kowalsky, W.: Large Area Electronics Using Printing Methods. Proc. IEEE 93, 1321–1329 (2005)

    Article  Google Scholar 

  15. Tiberto, P., Barrera, G., Celegato, F., Coïsson, M., Chiolerio, A., Martino, P., Pan-dolfi, P., Allia, P.: Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles. Eur. Phys. J. B. 86, 1–6 (2013)

    Article  MathSciNet  Google Scholar 

  16. Stoppa, M., Chiolerio, A.: Wearable Electronics and Smart Textiles: A Critical Review. Sensors 14, 11957–11992 (2014)

    Article  Google Scholar 

  17. Takamatsu, S., Kobayashi, T., Shibayama, N., Miyake, K., Itoh, T.: Fabric pressure sensor array fabricated with die-coating and weaving techniques. Sens. Actuators Phys. 184, 57–63 (2012)

    Article  Google Scholar 

  18. Arshak, K.I., McDonagh, D., Durcan, M.A.: Development of new capacitive strain sensors based on thick film polymer and cermet technologies. Sens. Actuators Phys. 79, 102–114 (2000)

    Article  Google Scholar 

  19. Yao, S., Zhu, Y.: Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6, 2345–2352 (2014)

    Article  Google Scholar 

  20. Park, S., Jayaraman, S.: Enhancing the quality of life through wearable technology. IEEE Eng. Med. Biol. Mag. 22, 41–48 (2003)

    Article  Google Scholar 

  21. Feys, H.M., De Weerdt, W.J., Selz, B.E., Cox Steck, G.A., Spichiger, R., Vereeck, L.E., Putman, K.D., Van Hoydonck, G.A.: Effect of a therapeutic inter-vention for the hemiplegic upper limb in the acute phase after stroke: a sin-gle-blind, randomized, controlled multicenter trial. Stroke J. Cereb. Circ. 29, 785–792 (1998)

    Article  Google Scholar 

  22. Paolucci, S., Antonucci, G., Grasso, M.G., Morelli, D., Troisi, E., Coiro, P., Bragoni, M.: Early versus delayed inpatient stroke rehabilitation: a matched comparison conducted in Italy. Arch. Phys. Med. Rehabil. 81, 695–700 (2000)

    Article  Google Scholar 

  23. Pacelli, M., Caldani, L., Paradiso, R.: Textile piezoresistive sensors for biomechanical variables monitoring. In: Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Conf., vol. 1, pp. 5358–5361 (2006)

    Google Scholar 

  24. Paradiso, R., Loriga, G., Taccini, N.: A Wearable Health Care System Based on Knitted Integrated Sensors. Trans. Info. Tech. Biomed. 9, 337–344 (2005)

    Article  Google Scholar 

  25. Giorgino, T., Tormene, P., Lorussi, F., De Rossi, D., Quaglini, S.: Sensor evaluation for wearable strain gauges in neurological rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 17, 409–415 (2009)

    Article  Google Scholar 

  26. Huang, C.-T., Shen, C.-L., Tang, C.-F., Chang, S.-H.: A wearable yarn-based piezo-resistive sensor. Sens. Actuators Phys. 141, 396–403 (2008)

    Article  Google Scholar 

  27. Pacelli, M., Loriga, G., Taccini, N., Paradiso, R.: Sensing Fabrics for Monitoring Physiological and Biomechanical Variables: E-textile solutions. In: 3rd IEEEEMBS Int. Summer Sch. Med. Devices Biosens., pp. 1–4 (2006)

    Google Scholar 

  28. Scilingo, E.P., Gemignani, A., Paradiso, R., Taccini, N., Ghelarducci, B., De Rossi, D.: Performance evaluation of sensing fabrics for monitoring physio-logical and biomechanical variables. IEEE Trans. Inf. Technol. Biomed. Publ. IEEE Eng. Med. Biol. Soc. 9, 345–352 (2005)

    Article  Google Scholar 

  29. Menguc, Y., Park, Y.-L., Martinez-Villalpando, E., Aubin, P., Zisook, M., Stirling, L., Wood, R.J., Walsh, C.J.: Soft wearable motion sensing suit for lower limb biomechanics measurements. In: 2013 IEEE Int. Conf. Robot. Autom. ICRA, pp. 5309–5316 (2013)

    Google Scholar 

  30. Lorussi, F., Rocchia, W., Scilingo, E.P., Tognetti, A., De Rossi, D.: Wear-able, redundant fabric-based sensor arrays for reconstruction of body seg-ment posture. IEEE Sens. J. 4, 807–818 (2004)

    Article  Google Scholar 

  31. Tognetti, A., Lorussi, F., Mura, G.D., Carbonaro, N., Pacelli, M., Paradiso, R., Ros-si, D.D.: New generation of wearable goniometers for motion capture systems. J. Neuroengineering Rehabil. 11, 56 (2014)

    Article  Google Scholar 

  32. Shyr, T.-W., Shie, J.-W., Jiang, C.-H., Li, J.-J.: A textile-based wearable sensing device designed for monitoring the flexion angle of elbow and knee movements. Sensors 14, 4050–4059 (2014)

    Article  Google Scholar 

  33. Mazzoldi, D.R.D., Lorussi, F., Scilingo, E.P., Paradiso, R., Paradiso, R.: Smart textiles for wearable motion capture systems. AUTEX Res. J. 2, 199–203 (2002)

    Google Scholar 

  34. Tormene, P., Bartolo, M., Nunzio, A.M.D., Fecchio, F., Quaglini, S., Tassorelli, C., Sandrini, G.: Estimation of human trunk movements by wearable strain sensors and improvement of sensor’s placement on intelligent bio-medical clothes. Biomed. Eng. OnLine 11, 95 (2012)

    Article  Google Scholar 

  35. Yan, C., Wang, J., Kang, W., Cui, M., Wang, X., Foo, C.Y., Chee, K.J., Lee, P.S.: Highly Stretchable Piezoresistive Graphene–Nanocellulose Nanopa-per for Strain Sensors. Adv. Mater. 26, 2022–2027 (2014)

    Article  Google Scholar 

  36. Bae, S.-H., Lee, Y., Sharma, B.K., Lee, H.-J., Kim, J.-H., Ahn, J.-H.: Graphene-based transparent strain sensor. Carbon 51, 236–242 (2013)

    Article  Google Scholar 

  37. Dickstein, R., Shefi, S., Marcovitz, E., Villa, Y.: Anticipatory postural ad-justment in selected trunk muscles in post stroke hemiparetic patients. Arch. Phys. Med. Rehabil. 85, 261–267 (2004)

    Article  Google Scholar 

  38. Kwakkel, G., Wagenaar, R.C., Kollen, B.J., Lankhorst, G.J.: Predicting dis-ability in stroke–a critical review of the literature. Age Ageing 25, 479–489 (1996)

    Article  Google Scholar 

  39. Mattmann, C., Clemens, F., Tröster, G.: Sensor for Measuring Strain in Textile. Sensors 8, 3719–3732 (2008)

    Article  Google Scholar 

  40. Derby, B.: Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annu. Rev. Mater. Res. 40, 395–414 (2010)

    Article  Google Scholar 

  41. Perelaer, B.J., de Laat, A.W.M., Hendriks, C.E., Schubert, U.S.: Inkjet-printed silver tracks: low temperature curing and thermal stability investigation. J. Mater. Chem. 18, 3209 (2008)

    Article  Google Scholar 

  42. Lee, Y., Choi, J., Lee, K.J., Stott, N.E., Kim, D.: Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology 19, 415604 (2008)

    Article  Google Scholar 

  43. Ando, B., Baglio, S., La Malfa, S., L’Episcopo, G.: All inkjet printed sys-tem for strain measurement. In: 2011 IEEE Sens., pp. 215–217 (2011)

    Google Scholar 

  44. Ando, B., Baglio, S.: All-Inkjet Printed Strain Sensors. IEEE Sens. J. 13, 4874–4879 (2013)

    Article  Google Scholar 

  45. Lee, H.-H., Chou, K.-S., Huang, K.-C.: Inkjet printing of nanosized silver colloids. Nanotechnology 16, 2436 (2005)

    Article  Google Scholar 

  46. Nie, X., Wang, H., Zou, J.: Inkjet printing of silver citrate conductive ink on PET substrate. Appl. Surf. Sci. 261, 554–560 (2012)

    Article  Google Scholar 

  47. Kordás, K., Mustonen, T., Tóth, G., Jantunen, H., Lajunen, M., Soldano, C., Tala-patra, S., Kar, S., Vajtai, R., Ajayan, P.M.: Inkjet Printing of Electrically Conductive Patterns of Carbon Nanotubes. Small 2, 1021–1025 (2006)

    Article  Google Scholar 

  48. Lessing, J., Glavan, A.C., Walker, S.B., Keplinger, C., Lewis, J.A., Whitesides, G.M.: Inkjet Printing of Conductive Inks with High Lateral Resolution on Omniphobic “RF Paper” for Paper-Based Electronics and MEMS. Adv. Mater. 26, 4677–4682 (2014)

    Article  Google Scholar 

  49. Huang, L., Huang, Y., Liang, J., Wan, X., Chen, Y.: Graphene-based con-ducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4, 675–684 (2011)

    Article  Google Scholar 

  50. Dang, M.C., Dang, T.M.D., Fribourg-Blanc, E.: Inkjet printing technology and conductive inks synthesis for microfabrication techniques. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 15009 (2013)

    Article  Google Scholar 

  51. Kawahara, Y., Hodges, S., Cook, B.S., Zhang, C., Abowd, G.D.: Instant Ink-jet Circuits: Lab-based Inkjet Printing to Support Rapid Prototyping of UbiComp Devices. In: Proc. 2013 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput., pp. 363–372. ACM, New York (2013)

    Chapter  Google Scholar 

  52. Mustonen, T., Kordás, K., Saukko, S., Tóth, G., Penttilä, J.S., Helistö, P., Seppä, H., Jantunen, H.: Inkjet printing of transparent and conductive patterns of single-walled carbon nanotubes and PEDOT-PSS composites. Phys. Status Solidi B 244, 4336–4340 (2007)

    Article  Google Scholar 

  53. Huang, L., Huang, Y., Liang, J., Wan, X., Chen, Y.: Graphene-based con-ducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4, 675–684 (2011)

    Article  Google Scholar 

  54. Tekin, E., Smith, P.J., Schubert, U.S.: Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4, 703 (2008)

    Article  Google Scholar 

  55. Al-Chami, H., Cretu, E.: Inkjet printing of microsensors. In: IEEE 15th Int. Mix.-Signals Sens. Syst. Test Workshop, IMS3TW 2009, pp. 1–6 (2009)

    Google Scholar 

  56. Correia, V., Caparros, C., Casellas, C., Francesch, L., Rocha, J.G., Lanceros-Mendez, S.: Development of inkjet printed strain sensors. Smart Mater. Struct. 22, 105028 (2013)

    Article  Google Scholar 

  57. Cochrane, C., Koncar, V.: Design and Development of a Flexible Strain Sensor for Textile Structures Based on a Conductive Polymer Composite. Sensors 7, 473–492 (2007)

    Article  Google Scholar 

  58. Bhushan, B., Luo, D., Schricker, S.R., Sigmund, W., Zauscher, S. (eds.): Handbook of Nanomaterials Properties. Springer, Heidelberg (2014)

    Google Scholar 

  59. Inkjet Printing as a Key Enabling Technology for Printed Electronics. In: Sigma-Aldrich, http://www.sigmaaldrich.com/technical-documents/articles/material-matters/inkjet-printing-as.html (accessed February 19, 2015)

  60. Valeton, J.J.P., Hermans, K., Bastiaansen, C.W.M., Broer, D.J., Perelaer, J., Schubert, U.S., Crawford, G.P., Smith, P.J.: Room temperature preparation of conductive silver features using spin-coating and inkjet printing. J. Mater. Chem. 20, 543–546 (2009)

    Article  Google Scholar 

  61. Sawhney, A., Agrawal, A., Patra, P., Calvert, P.: Piezoresistive Sensors on Textiles by Inkjet Printing and Electroless Plating. Symp. – Smart Nanotex-tiles (2006), doi:10.1557/PROC-0920-S05-04

    Google Scholar 

  62. Quintero, J.A.Q., Mancosu, R.D.: Comparison and characterization of a typical strain gage trace against another using the printed method, pp. 1–6 (2010)

    Google Scholar 

  63. Dionisi, A., Borghetti, M., Sardini, E., Serpelloni, M.: Biocompatible ink-jet resistive sensors for biomedical applications. In: Proc. 2014 IEEE Int. Instrum. Meas. Technol. Conf., I2MTC, pp. 1629–1633 (2014)

    Google Scholar 

  64. Sun, Y., Lacour, S.P., Brooks, R.A., Rushton, N., Fawcett, J., Cameron, R.E.: Assessment of the biocompatibility of photosensitive polyimide for im-plantable medical device use. J. Biomed. Mater. Res. A 90, 648–655 (2009)

    Article  Google Scholar 

  65. Rustogi, R., Mill, J., Fraser, J.F., Kimble, R.M.: The use of Acticoat in neo-natal burns. Burns J. Int. Soc. Burn. Inj. 31, 878–882 (2005)

    Article  Google Scholar 

  66. Borghetti, M., Sardini, E., Serpelloni, M.: Preliminary study of resistive sensors in inkjet technology for force measurements in biomedical applica-tions. In: 11th Int. Multi-Conf. Syst. Signals Devices, SSD 2014, pp. 1–4 (2014)

    Google Scholar 

  67. Borghetti, M., Sardini, E., Serpelloni, M.: Sensorized Glove for Measur-ing Hand Finger Flexion for Rehabilitation Purposes. IEEE Trans. Instrum. Meas. 62, 3308–3314 (2013)

    Article  Google Scholar 

  68. Vaughn, C.M., Clemmons, P.: Piezoelectric belts as a method for meas-uring chest and abdominal movement for obstructive sleep apnea diagnosis. Neurodiagnostic J. 52, 275–280 (2012)

    Google Scholar 

  69. Calvert, P., Duggal, D., Patra, P., Agrawal, A., Sawhney, A.: Conducting Polymer and Conducting Composite Strain Sensors on Textiles. Mol. Cryst. Liq. Cryst. 484, 291/[657]–302/[668] (2008)

    Google Scholar 

  70. Wang, Y., Wang, L., Yang, T., Li, X., Zang, X., Zhu, M., Wang, K., Wu, D., Zhu, H.: Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring. Adv. Funct. Mater. 24, 4666–4670 (2014)

    Article  Google Scholar 

  71. Brinker, C.J., Frye, G.C., Hurd, A.J., Ashley, C.S.: Fundamentals of sol-gel dip coating. Thin Solid Films 201, 97–108 (1991)

    Article  Google Scholar 

  72. Gong, S., Schwalb, W., Wang, Y., Chen, Y., Tang, Y., Si, J., Shirinzadeh, B., Cheng, W.: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. (2014), doi:10.1038/ncomms4132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Farooq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farooq, M., Sazonov, E. (2015). Strain Sensors in Wearable Devices. In: Mukhopadhyay, S. (eds) Wearable Electronics Sensors. Smart Sensors, Measurement and Instrumentation, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-18191-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18191-2_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18190-5

  • Online ISBN: 978-3-319-18191-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics