Skip to main content

A Refined Complexity Analysis of Finding the Most Vital Edges for Undirected Shortest Paths

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9079))

Included in the following conference series:

Abstract

We study the NP-hard Shortest Path Most Vital Edges problem arising in the context of analyzing network robustness. For an undirected graph with positive integer edge lengths and two designated vertices \(s\) and \(t\), the goal is to delete as few edges as possible in order to increase the length of the (new) shortest \(st\)-path as much as possible. This scenario has been mostly studied from the viewpoint of approximation algorithms and heuristics, while we particularly introduce a parameterized and multivariate point of view. We derive refined tractability as well as hardness results, and identify numerous directions for future research. Among other things, we show that increasing the shortest path length by at least one is much easier than to increase it by at least two.

Work started during a visit (March 2014) of the second and third author at Université Paris-Dauphine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Noy, A., Khuller, S., Schieber, B.: The complexity of finding most vital arcs and nodes. Technical report, College Park, MD, USA (1995)

    Google Scholar 

  2. Bazgan, C., Toubaline, S., Vanderpooten, D.: Efficient determination of the \(k\) most vital edges for the minimum spanning tree problem. Computers and Operations Research 39(11), 2888–2898 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bazgan, C., Toubaline, S., Vanderpooten, D.: Critical edges/nodes for the minimum spanning tree problem: complexity and approximation. Journal of Combinatorial Optimization 26(1), 178–189 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized approximability of maximizing the spread of influence in networks. Journal of Discrete Algorithms 27, 54–65 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A Fast Branching Algorithm for Cluster Vertex Deletion. In: Hirsch, E.A., Kuznetsov, S.O., Pin, J.É., Vereshchagin, N.K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 111–124. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Doucha, M., Kratochvíl, J.: Cluster Vertex Deletion: A Parameterization between Vertex Cover and Clique-Width. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 348–359. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer (2013)

    Google Scholar 

  8. Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. European Journal of Combinatorics 34(3), 541–566 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)

    Google Scholar 

  10. Frederickson, G.N., Solis-Oba, R.: Increasing the weight of minimum spanning trees. In: Proc. 7th SODA, pp. 539–546 (1996)

    Google Scholar 

  11. Fulkerson, D., Harding, G.C.: Maximizing the minimum source-sink path subject to a budget constraint. Mathematical Programming 13, 116–118 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979)

    Google Scholar 

  13. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  14. Guo, J., Shrestha, Y.R.: Parameterized Complexity of Edge Interdiction Problems. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 166–178. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Israeli, E., Wood, R.K.: Shortest-path network interdiction. Networks 40(2), 97–111 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K.M., Gurvich, V., Rudolf, G., Zhao, J.: On short paths interdiction problems: Total and node-wise limited interdiction. Theory of Computing Systems 43(2), 204–233 (2008)

    Article  MathSciNet  Google Scholar 

  17. Komusiewicz, C., Niedermeier, R.: New Races in Parameterized Algorithmics. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 19–30. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Kratsch, S.: Recent developments in kernelization: A survey. Bulletin of the EATCS 113, 58–97 (2014)

    MathSciNet  Google Scholar 

  19. Liang, W.: Finding the \(k\) most vital edges with respect to minimum spanning trees for fixed \(k\). Discrete Applied Mathematics 113(2–3), 319–327 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Malik, K., Mittal, A., Gupta, S.K.: The \(k\) most vital arcs in the shortest path problem. Operations Research Letters 8, 223–227 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nardelli, E., Proietti, G., Widmayer, P.: A faster computation of the most vital edge of a shortest path. Information Processing Letters 79(2), 81–85 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)

    Google Scholar 

  23. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc. 27th STACS, vol. 5. LIPIcs, pp. 17–32. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2010)

    Google Scholar 

  24. Pan, F., Schild, A.: Interdiction Problems on Planar Graphs. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) RANDOM 2013 and APPROX 2013. LNCS, vol. 8096, pp. 317–331. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Sorge, M., Weller, M.: The graph parameter hierarchy. Manuscript (2013). http://fpt.akt.tu-berlin.de/msorge/parameter-hierarchy.pdf

  26. Wood, R.K.: Deterministic network interdiction. Mathematical and Computer Modeling 17(2), 1–18 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Nichterlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bazgan, C., Nichterlein, A., Niedermeier, R. (2015). A Refined Complexity Analysis of Finding the Most Vital Edges for Undirected Shortest Paths. In: Paschos, V., Widmayer, P. (eds) Algorithms and Complexity. CIAC 2015. Lecture Notes in Computer Science(), vol 9079. Springer, Cham. https://doi.org/10.1007/978-3-319-18173-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18173-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18172-1

  • Online ISBN: 978-3-319-18173-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics