Skip to main content

“Green” Barrier Coverage with Mobile Sensors

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9079))

Included in the following conference series:

Abstract

Mobile sensors are located on a barrier represented by a line segment. Each sensor has a single energy source that can be used for both moving and sensing. A sensor consumes energy in movement in proportion to distance traveled, and it expends energy per time unit for sensing in direct proportion to its radius raised to a constant exponent. We address the problem of energy efficient coverage. The input consists of the initial locations of the sensors and a coverage time requirement \(t\). A feasible solution consists of an assignment of destinations and coverage radii to all sensors such that the barrier is covered. We consider two variants of the problem that are distinguished by whether the radii are given as part of the input. In the fixed radii case, we are also given a radii vector \(\rho \), and the radii assignment \(r\) must satisfy \(r_i \in \{0,\rho _i\}\), for every \(i\), while in the variable radii case the radii assignment is unrestricted. We consider two objective functions. In the first the goal is to minimize the sum of the energy spent by all sensors and in the second the goal is to minimize the maximum energy used by any sensor.

We present FPTASs for the problem of minimizing the energy sum with variable radii and for the problem of minimizing the maximum energy with variable radii. We also show that the latter can be approximated within any additive constant \(\varepsilon >0\). We show that the problem of minimizing the energy sum with fixed radii cannot be approximated within a factor of \(O(n^c)\), for any constant \(c\), unless P\(=\)NP. The problem of minimizing the maximum energy with fixed radii is shown to be strongly NP-hard. Additional results are given for three special cases: (i) sensors are stationary, (ii) free movement, and (iii) uniform fixed radii.

D. Rawitz—Supported by the Israel Science Foundation (grant no. 497/14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnetis, A., Grande, E., Mirchandani, P.B., Pacifici, A.: Covering a line segment with variable radius discs. Computers & OR 36(5), 1423–1436 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks 7(3), 537–568 (2009)

    Article  Google Scholar 

  3. Bar-Noy, A., Baumer, B.: Maximizing Network Lifetime on the Line with Adjustable Sensing Ranges. In: Erlebach, T., Nikoletseas, S., Orponen, P. (eds.) ALGOSENSORS 2011. LNCS, vol. 7111, pp. 28–41. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Bar-Noy, A., Baumer, B., Rawitz, D.: Changing of the Guards: Strip Cover with Duty Cycling. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 36–47. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Bar-Noy, A., Baumer, B., Rawitz, D.: Set it and forget it: Approximating the set once strip cover problem. Tech. Rep. 1204.1082, CoRR (2012)

    Google Scholar 

  6. Bar-Noy, A., Brown, T., Johnson, M.P., Liu, O.: Cheap or Flexible Sensor Coverage. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds.) DCOSS 2009. LNCS, vol. 5516, pp. 245–258. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Bar-Noy, A., Rawitz, D., Terlecky, P.: Maximizing Barrier Coverage Lifetime with Mobile Sensors. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 97–108. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Bhattacharya, B.K., Burmester, M., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal movement of mobile sensors for barrier coverage of a planar region. Theor. Comput. Sci. 410(52), 5515–5528 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Buchsbaum, A.L., Efrat, A., Jain, S., Venkatasubramanian, S., Yi, K.: Restricted strip covering and the sensor cover problem. In: SODA, pp. 1056–1063 (2007)

    Google Scholar 

  10. Chen, D.Z., Gu, Y., Li, J., Wang, H.: Algorithms on Minimizing the Maximum Sensor Movement for Barrier Coverage of a Linear Domain. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 177–188. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Czyzowicz, J., et al.: On Minimizing the Maximum Sensor Movement for Barrier Coverage of a Line Segment. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793, pp. 194–212. Springer, Heidelberg (2009)

    Google Scholar 

  12. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On Minimizing the Sum of Sensor Movements for Barrier Coverage of a Line Segment. In: Nikolaidis, I., Wu, K. (eds.) ADHOC-NOW 2010. LNCS, vol. 6288, pp. 29–42. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Sayedi-Roshkhar, A.S., Gharan, S.O., Zadimoghaddam, M.: Minimizing movement. ACM Transactions on Algorithms 5(3) (2009)

    Google Scholar 

  14. Dobrev, S., Durocher, S., Eftekhari, M., Georgiou, K., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S., Urrutia, J.: Complexity of Barrier Coverage with Relocatable Sensors in the Plane. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 170–182. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Fan, H., Li, M., Sun, X., Wan, P., Zhao, Y.: Barrier coverage by sensors with adjustable ranges. ACM Transactions on Sensor Networks 11(1) (2014)

    Google Scholar 

  16. Gibson, M., Varadarajan, K.: Decomposing coverings and the planar sensor cover problem. In: FOCS, pp. 159–168 (2009)

    Google Scholar 

  17. Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base station coverage with minimum total radii. Computer Networks 47(4), 489–501 (2005)

    Article  MATH  Google Scholar 

  18. Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors moved on line barriers. In: WCNC, pp. 653–658 (2011)

    Google Scholar 

  19. Phelan, B., Terlecky, P., Bar-Noy, A., Brown, T., Rawitz, D.: Should I stay or should I go? Maximizing lifetime with relays. In: 8th DCOSS, pp. 1–8 (2012)

    Google Scholar 

  20. Tan, X., Wu, G.: New Algorithms for Barrier Coverage with Mobile Sensors. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 327–338. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Terlecky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bar-Noy, A., Rawitz, D., Terlecky, P. (2015). “Green” Barrier Coverage with Mobile Sensors. In: Paschos, V., Widmayer, P. (eds) Algorithms and Complexity. CIAC 2015. Lecture Notes in Computer Science(), vol 9079. Springer, Cham. https://doi.org/10.1007/978-3-319-18173-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18173-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18172-1

  • Online ISBN: 978-3-319-18173-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics