Skip to main content
  • 2047 Accesses

Abstract

The aim of this article is to present an approach to the analysis of simple systems composed of a large number of units in interaction. Suppose to have a large number of agents belonging to a finite number of different groups: as the agents randomly interact with each other, they move from a group to another as a result of the interaction. The object of interest is the stochastic process describing the number of agents in each group. As this is generally intractable, it has been proposed in the literature to approximate it in several ways. We review these approximations and we illustrate them with reference to a version of the epidemic model. The tools presented in the paper should be considered as a complement rather than as a substitute of the classical analysis of ABMs through simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the following models, discrete differences between individuals can be accounted for by adequately expanding the number of compartments and by varying the transition intensities.

  2. 2.

    We write that \(X_{n} = O_{\mathbb{P}}\left (a_{n}\right )\) where n is an index diverging to infinity if, for any \(\varepsilon> 0\), there exists a finite M > 0 such that \(\mathbb{P}\left (\left \vert X_{n}/a_{n}\right \vert> M\right ) <\varepsilon\) for any n large enough.

  3. 3.

    We follow here the Kunrei-shiki romanization convention, instead of the more common Hepburn romanization Itō, because Itô himself used the first one in several publications.

References

  • Allain, M.-F. (1976). Approximation par un processus de diffusion des oscillations, autour d’une valeur moyenne, d’une suite de processus de Markov de saut pur. Comptes rendus de l’Académie des sciences Paris Séries A-B, 282(16), Aiii, A891–A894.

    Google Scholar 

  • Allain, M.-F. (1976). Étude de la vitesse de convergence d’une suite de processus de Markov de saut pur. Comptes rendus de l’Académie des sciences Paris Séries A-B, 282(17), Aiii, A1015–A1018.

    Google Scholar 

  • Alm, S. E. (1978). On the rate of convergence in diffusion approximation of jump Markov processes. Report 8, Uppsala University, Department of Mathematics.

    Google Scholar 

  • Axelrod, R. (1986). An evolutionary approach to norms. American Political Science Review, 80(4), 1095–1111.

    Article  Google Scholar 

  • Barbour, A. D. (1972). The principle of the diffusion of arbitrary constants. Journal of Applied Probability, 9, 519–541.

    Article  Google Scholar 

  • Barbour, A. D. (1974). On a functional central limit theorem for Markov population processes. Advances in Applied Probability, 6, 21–39.

    Article  Google Scholar 

  • Black, A. J., & McKane, A. J. (2012). Stochastic formulation of ecological models and their applications. Trends in Ecology & Evolution, 27(6), 337–345.

    Article  Google Scholar 

  • Bortolussi, L., Hillston, J., Latella, D., & M. Massink (2013). Continuous approximation of collective system behaviour: A tutorial. Performance Evaluation, 70, 317–349.

    Article  Google Scholar 

  • Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329(5996), 1194–1197.

    Article  Google Scholar 

  • Challenger, J. D., Fanelli, D., & McKane, A. J. (2014). The theory of individual based discrete-time processes. The Journal of Statistical Physics, 156(1), 131–155.

    Article  Google Scholar 

  • Collet, F., Dai Pra, P., & Sartori, E. (2010). A simple mean field model for social interactions: Dynamics, fluctuations, criticality. The Journal of Statistical Physics, 139(5), 820–858.

    Article  Google Scholar 

  • Ethier, S. N., & Kurtz, T. G. (1986). Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Feller, W. (1951). Diffusion processes in genetics. In J. Neyman (Ed.), Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (pp. 227–246). Berkeley: University of California Press.

    Google Scholar 

  • Galán, J. M., & Izquierdo, L. R. (2005). Appearances can be deceiving: Lessons learned re-implementing Axelrod’s ‘evolutionary approach to norms’. Journal of Artificial Societies and Social Simulation, 8(3), 2.

    Google Scholar 

  • Goutsias, J., & Jenkinson G. (2013). Markovian dynamics on complex reaction networks. Physics Reports, 529(2), 199–264.

    Article  Google Scholar 

  • Hirshman, B. R., Charles, J. St., & Carley, K. M. (2011). Leaving us in tiers: can homophily be used to generate tiering effects? Computational & Mathematical Organization Theory, 17(4), 318–343.

    Article  Google Scholar 

  • Karlin, S., & Taylor, H. M. (1975). A first course in stochastic processes, 2nd ed. New York/London: Academic Press.

    Google Scholar 

  • Kurtz, T. G. (1970). Solutions of ordinary differential equations as limits of pure jump Markov processes. Journal of Applied Probability, 7, 49–58.

    Article  Google Scholar 

  • Kurtz, T. G. (1971). Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. Journal of Applied Probability, 8, 344–356.

    Article  Google Scholar 

  • Kurtz, T. G. (1972). The relationship between stochastic and deterministic models for chemical reactions. The Journal of Chemical Physics, 57(7), 2976–2978.

    Article  Google Scholar 

  • Kurtz, T. G. (1976). Limit theorems and diffusion approximations for density dependent Markov chains. Mathematical Programming Studies, 5, 67–78. Stochastic systems: Modeling, identification and optimization, I (Proc. Sympos., Univ. Kentucky, Lexington).

    Google Scholar 

  • Kurtz, T. G. (1977/1978). Strong approximation theorems for density dependent Markov chains. Stochastic Processes and their Applications, 6(3), 223–240.

    Google Scholar 

  • Kurtz, T. G. (1980). Relationships between stochastic and deterministic population models. In Biological growth and spread (Proc. Conf., Heidelberg, 1979). Lecture Notes in Biomathematics (Vol. 38, pp. 449–467). Berlin/New York: Springer.

    Google Scholar 

  • Kurtz, T. G. (1981). Approximation of population processes. CBMS-NSF Regional Conference Series in Applied Mathematics (Vol. 36). Philadelphia: Society for Industrial and Applied Mathematics (SIAM).

    Google Scholar 

  • Kurtz, T. G. (1983). Gaussian approximations for Markov chains and counting processes. In Proceedings of the 44th session of the International Statistical Institute, Vol. 1 (Madrid, 1983) (Vol. 50, pp. 361–376). With a discussion in Vol. 3, pp. 237–248.

    Google Scholar 

  • Lotka, A. J. (1925). Elements of Physical Biology. Baltimore: Williams & Wilkins Company.

    Google Scholar 

  • Matis, J. H., & Kiffe, T. R. (2000). Stochastic Population Models: A Compartmental Perspective. Lecture Notes in Statistics. New York: Springer.

    Google Scholar 

  • Norman, M. F. (1968). Slow learning. British Journal of Mathematical and Statistical Psychology, 21, 141–159.

    Article  Google Scholar 

  • Norman, M. F. (1972). Markov processes and learning models. Mathematics in Science and Engineering (Vol. 84). New York/London: Academic Press.

    Google Scholar 

  • Norman, M. F. (1974a). A central limit theorem for Markov processes that move by small steps. The Annals of Probability, 2, 1065–1074.

    Article  Google Scholar 

  • Norman, M. F. (1974b). Markovian learning processes. SIAM Review, 16, 143–162.

    Article  Google Scholar 

  • Plikynas, D., & Masteika, S. (2014). Agent-based nonlocal social systems: Neurodynamic oscillations approach. In G. Meiselwitz (Ed.), Social Computing and Social Media. Lecture Notes in Computer Science (Vol. 8531, pp. 253–264). New York: Springer International Publishing.

    Google Scholar 

  • Pollett, P. K. (2001). Diffusion approximations for ecological models. In F. Ghassemi, P. Whetton, R. Little & M. Littleboy (Eds.), MODSIM 2001 International Congress on Modelling and Simulation (pp. 843–848). Townsville: Modelling and Simulation Society of Australia and New Zealand Inc.

    Google Scholar 

  • Railsback, S. F., & Grimm, V. (2011). Agent-based and individual-based modeling: A practical introduction. Princeton: Princeton University Press.

    Google Scholar 

  • Sigmund, K. (2007). Kolmogorov and population dynamics. In Kolmogorov’s heritage in mathematics (pp. 177–186). Berlin: Springer.

    Chapter  Google Scholar 

  • Volterra, V. (1931). Leçons sur la théorie mathématique de la lutte pour la vie. Cahiers scientifiques, Fascicule VII. Paris: Gauthier-Villars.

    Google Scholar 

  • Volterra, V. (1962). Opere matematiche. Memorie e Note. Volume quinto: 1926–1940. Accademia nazionale dei Lincei.

    Google Scholar 

  • Wang, X., Tao, H., Xie, Z., & Yi, D. (2013). Mining social networks using wave propagation. Computational & Mathematical Organization Theory, 19(4), 569–579.

    Article  Google Scholar 

  • Zhang, Y., & Wu, Y. (2012). How behaviors spread in dynamic social networks. Computational & Mathematical Organization Theory, 18(4), 419–444.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaello Seri .

Editor information

Editors and Affiliations

Appendix: Technical Conditions

Appendix: Technical Conditions

In this appendix, we discuss the technical conditions under which the results stated above hold true.

As concerns the deterministic approximation of Sect. 13.3, we follow Theorem 8.1 in Kurtz (1981) (similar results are Theorem 3.1 in Norman, 1968; Theorem (3.1) in Kurtz, 1970; Theorem 8.1.1 in Norman, 1972; Theorem (2.1) in Kurtz, 1976; Theorem 2.2 in Kurtz, 1978; Theorem (2.16) in Kurtz, 1980; Theorem 2.1 in Chap. 11 in Ethier & Kurtz, 1986).

Let K ⊂ E be a bounded and closed (i.e., compact) set. The first condition requires that, for each K:

$$\displaystyle{\sum _{\boldsymbol{\ell}}\left \vert \boldsymbol{\ell}\right \vert \cdot \sup _{\mathbf{x}\in K}\beta _{\boldsymbol{\ell}}\left (\mathbf{x}\right ) <\infty.}$$

The second condition requires that, for any K, there exists M K such that:

$$\displaystyle{\left \vert \mathbf{f}\left (\mathbf{x}\right ) -\mathbf{f}\left (\mathbf{y}\right )\right \vert \leq M_{K} \cdot \left \vert \mathbf{x} -\mathbf{y}\right \vert,\quad \mathbf{x},\mathbf{y} \in K.}$$

At last, we require that the initial condition of the original process converges to the one of the deterministic one, i.e. \(\lim _{N\rightarrow \infty }\mathbf{X}_{0}^{\left (N\right )} = \mathbf{x}_{0}\). By the way, under these conditions, the convergence of \(\left \{\mathbf{X}_{t}^{\left (N\right )}\right \}_{t\in \mathbb{R}_{+}}\) to \(\left \{\mathbf{X}_{t}^{{\prime}}\right \}_{t\in \mathbb{R}_{+}}\) is uniform for t belonging to bounded subsets of \(\mathbb{R}_{+}\).

Exercise 8 (News Diffusion Model—Continued).

Consider the epidemic model seen in Exercise 1 in the second rewriting. Using the fact that \(x \in \left [0,1\right ]\), it is possible to see that \(x\left (1 - x\right ) \leq \frac{1} {4}\). Therefore, we have:

$$\displaystyle{\sum _{\ell}\left \vert \ell\right \vert \cdot \sup _{x\in K}\beta _{\ell}\left (x\right ) = p \cdot \sup _{x\in K}x\left (1 - x\right ) \leq \frac{p} {4} <\infty.}$$

As concerns the second hypothesis, we have:

$$\displaystyle\begin{array}{rcl} \left \vert f\left (x\right ) - f\left (y\right )\right \vert & =& p \cdot \left \vert x\left (1 - x\right ) - y\left (1 - y\right )\right \vert {}\\ &\leq & p \cdot \sup _{z\in \left [x,y\right ]}\left \vert \frac{\partial \left [z\left (1 - z\right )\right ]} {\partial z} \right \vert \cdot \left \vert x - y\right \vert {}\\ & =& p \cdot \sup _{z\in \left [x,y\right ]}\left \vert 1 - 2z\right \vert \cdot \left \vert x - y\right \vert \leq p \cdot \left \vert x - y\right \vert {}\\ \end{array}$$

where the second step derives from the mean value theorem. At last, we have supposed that \(I_{0} = i_{0}\) so that the initial condition is trivially verified. □ 

The diffusion approximation of Sect. 13.4.1 holds under the following conditions (this is Theorem 8.4 in Kurtz, 1981; see Theorem (3.13) in Kurtz, 1976; Theorem 3.3 in Kurtz, 1978; Theorem 2.1 in Kurtz, 1983; Theorem 3.1 in Chap. 11 in Ethier & Kurtz, 1986 for alternative or more general conditions):

  • for any index \(\boldsymbol{\ell}\) but a finite number, \(\beta _{\boldsymbol{\ell}}\left (\mathbf{x}\right ) \equiv 0\);

  • for any index \(\boldsymbol{\ell}\), \(\overline{\beta }_{\boldsymbol{\ell}} =\sup _{\mathbf{x}}\beta _{\boldsymbol{\ell}}\left (\mathbf{x}\right ) <+\infty\);

  • there exists M > 0 such that:

    $$\displaystyle{\left \vert \beta _{\boldsymbol{\ell}}\left (\mathbf{x}\right ) -\beta _{\boldsymbol{\ell}}\left (\mathbf{y}\right )\right \vert \leq M \cdot \overline{\beta }_{\boldsymbol{\ell}}\cdot \left \vert \mathbf{x} -\mathbf{y}\right \vert;}$$
  • there exists M > 0 such that:

    $$\displaystyle{\left \vert \mathbf{f}\left (\mathbf{x}\right ) -\mathbf{f}\left (\mathbf{y}\right )\right \vert \leq M \cdot \left \vert \mathbf{x} -\mathbf{y}\right \vert.}$$

The rate on the approximation of \(\left \{\mathbf{X}_{t}\right \}_{t\in \mathbb{R}_{+}}\) through \(\left \{\mathbf{X}_{t}^{{\prime\prime}}\right \}_{t\in \mathbb{R}_{+}}\) at the end of Sect. 13.4.1 can be found in Theorem (3.13) in Kurtz (1976), Theorem 3.3 in Kurtz (1978), Theorem 8.4 in Kurtz (1981) and Theorem 3.1 in Chap. 11 in Ethier and Kurtz (1986). By the way, the coupling is uniform over bounded intervals of the real line.

Exercise 9 (News Diffusion Model—Continued).

There exists only one index , i.e.  = 1, for which \(\beta _{\ell}\not\equiv 0\). For this index, \(\overline{\beta }_{1} = p \cdot \sup _{x\in \left [0,1\right ]}x\left (1 - x\right ) = p/4 <+\infty\). Now, from Exercise 8:

$$\displaystyle{\left \vert \beta _{1}\left (x\right ) -\beta _{1}\left (y\right )\right \vert \leq p \cdot \left \vert x - y\right \vert,}$$

i.e. one can take M = 4. On the other hand, always from Exercise 8:

$$\displaystyle{\left \vert f\left (x\right ) - f\left (y\right )\right \vert = \left \vert \beta _{1}\left (x\right ) -\beta _{1}\left (y\right )\right \vert \leq p \cdot \left \vert x - y\right \vert,}$$

i.e. one can take M = p. Therefore, any \(M \geq \max \left \{4,p\right \}\) respects the conditions. □ 

The convergence in Sect. 13.4.2 holds under the following conditions (these are the ones stated in Theorem 8.2 in Kurtz, 1981; for related results, see Theorem 1.1 in Norman, 1968; Theorem (3.5) in Kurtz, 1971; Theorem 8.1.1 in Norman, 1972; Theorem 1 in Barbour, 1974; Theorem (2.3) in Kurtz, 1976; Theorem 2 in Allain, 1976a; Theorem 4.4 in Kurtz, 1978; Theorem 2.2 in Kurtz, 1983; Theorem 2.3 in Chap. 11 in Ethier & Kurtz, 1986):

  • for each bounded closed set K, we have:

    $$\displaystyle{\sum _{\boldsymbol{\ell}}\left \vert \boldsymbol{\ell}\right \vert ^{2}\sup _{ \mathbf{x}\in K}\beta _{\boldsymbol{\ell}}\left (\mathbf{x}\right ) <\infty;}$$
  • the functions f and \(\beta _{\boldsymbol{\ell}}\), for each \(\boldsymbol{\ell}\), are continuous;

  • the initial conditions converge in such a way that \(\lim _{N\rightarrow \infty }\sqrt{N}\left \vert \mathbf{X}_{0}^{\left (N\right )} -\mathbf{x}_{0}\right \vert = \mathbf{0}\).

Versions of this result holding uniformly for t > 0 have been stated in Theorem 3.2 (ii) in Norman (1974b), Theorem 1 in Norman (1974a), Theorem (2.7) in Kurtz (1976) and Theorem 8.5 in Kurtz (1981). Berry–Esséen-type theorems can be found in Theorem 1 in Barbour (1974), Theorem (2.5) in Kurtz (1976), Allain (1976b), Corollary 4.5 in Kurtz (1978) and Chapters 5 and 6 in Alm (1978).

The rate on the approximation of \(\left \{\mathbf{X}_{t}\right \}_{t\in \mathbb{R}_{+}}\) through \(\left \{\mathbf{X}_{t}^{{\prime\prime\prime}}\right \}_{t\in \mathbb{R}_{+}}\) at the end of Sect. 13.4.2 is uniform over bounded subsets of the real line and can be found in Theorem 4.4 in Kurtz (1978) and in Theorem 3.2 and following remarks in Chap. 11 in Ethier and Kurtz (1986).

Exercise 10 (News Diffusion Model—Continued).

Reasoning as in Exercise 8, we have:

$$\displaystyle{\sum _{\ell}\left \vert \ell\right \vert ^{2} \cdot \sup _{ x\in K}\beta _{\ell}\left (x\right ) \leq \frac{p} {4} <\infty.}$$

As concerns \(\partial f\left (x\right ) = p \cdot \left (1 - 2x\right )\) and \(\beta _{1}\left (x\right ) = p \cdot x\left (1 - x\right )\), they are clearly continuous. □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seri, R. (2016). Analytical Approaches to Agent-Based Models. In: Secchi, D., Neumann, M. (eds) Agent-Based Simulation of Organizational Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-18153-0_13

Download citation

Publish with us

Policies and ethics