Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 230))

Abstract

Hydrogen sulfide (H2S) is a biologically active gas that is synthesized naturally by three enzymes, cystathionine γ-lyase (CSE), cystathionine β-synthetase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). These enzymes are constitutively present in a wide array of biological cells and tissues and their expression can be induced by a number of disease states. It is becoming increasingly clear that H2S is an important mediator of a wide range of cell functions in health and in disease. This review therefore provides an overview of the biochemical and molecular regulation of H2S synthesizing enzymes both in physiological conditions and their modulation in disease states with particular focus on their regulation in asthma, atherosclerosis and diabetes. The importance of small molecule inhibitors in the study of molecular pathways, the current use of common H2S synthesizing enzyme inhibitors and the relevant characteristics of mice in which these enzymes have been genetically deleted will also be summarized. With a greater understanding of the molecular regulation of these enzymes in disease states, as well as the availability of novel small molecules with high specificity targeted towards H2S producing enzymes, the potential to regulate the biological functions of this intriguing gas H2S for therapeutic effect can perhaps be brought one step closer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    CAS  PubMed  Google Scholar 

  • Agrawal N, Banerjee R (2008) Human polycomb 2 protein is a SUMO E3 ligase and alleviates substrate-induced inhibition of cystathionine β-synthase sumoylation. PLoS ONE 3:e4032

    PubMed Central  PubMed  Google Scholar 

  • Akagi R (1982) Purification and characterization of cysteine aminotransferase from rat liver cytosol. Acta Med Okayama 36:187–197

    CAS  PubMed  Google Scholar 

  • Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A (2013) Selectivity of commonly used pharmacological inhibitors for cystathionine beta synthase (CBS) and cystathionine gamma lyase (CSE). Br J Pharmacol 169:922–932. doi:10.1111/bph.12171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banerjee R, Zou C-G (2005) Redox regulation and reaction mechanism of human cystathionine-β-synthase: a PLP-dependent hemesensor protein. Arch Biochem Biophys 433:144–156

    CAS  PubMed  Google Scholar 

  • Beauchamp R, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA, Leber P (1984) A critical review of the literature on hydrogen sulfide toxicity. CRC Crit Rev Toxicol 13:25–97

    CAS  Google Scholar 

  • Beinert H, Holm RH, Münck E (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659

    CAS  PubMed  Google Scholar 

  • Borrás C, Esteve JM, Viña JR, Sastre J, Viña J, Pallardó FV (2004) Glutathione regulates telomerase activity in 3T3 fibroblasts. J Biol Chem 279:34332–34335. doi:10.1074/jbc.M402425200

    PubMed  Google Scholar 

  • Brancaleone V, Roviezzo F, Vellecco V, De Gruttola L, Bucci M, Cirino G (2008) Biosynthesis of H2S is impaired in non-obese diabetic (NOD) mice. Br J Pharmacol 155:673–680. doi:10.1038/bjp.2008.296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burnett G, Marcotte P, Walsh C (1980) Mechanism-based inactivation of pig heart L-alanine transaminase by L-propargylglycine. Half-site reactivity. J Biol Chem 255:3487–3491

    CAS  PubMed  Google Scholar 

  • Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105:365–374. doi:10.1161/CIRCRESAHA.109.199919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cantoni G (1952) The nature of the active methyl donor formed enzymatically from l-methionine and adenosinetriphosphate1, 2. J Am Chem Soc 74:2942–2943

    CAS  Google Scholar 

  • Castro-Piedras I, Perez-Zoghbi JF (2013) Hydrogen sulphide inhibits Ca2+ release through InsP3 receptors and relaxes airway smooth muscle. J Physiol 591:5999–6015. doi:10.1113/jphysiol.2013.257790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen X, Jhee K-H, Kruger WD (2004) Production of the neuromodulator H2S by cystathionine β-synthase via the condensation of cysteine and homocysteine. J Biol Chem 279:52082–52086

    CAS  PubMed  Google Scholar 

  • Chen YH, Yao WZ, Geng B, Ding YL, Lu M, Zhao MW, Tang CS (2005) Endogenous hydrogen sulfide in patients with COPD. Chest 128:3205–3211. doi:10.1378/chest.128.5.3205

    CAS  PubMed  Google Scholar 

  • Chen YH, Wu R, Geng B, Qi YF, Wang PP, Yao WZ, Tang CS (2009) Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. Cytokine 45:117–123. doi:10.1016/j.cyto.2008.11.009

    CAS  PubMed  Google Scholar 

  • Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R (2009) H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284:11601–11612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung KF (2014) Hydrogen sulfide as a potential biomarker of asthma. Expert Rev Respir Med 8:5–13. doi:10.1586/17476348.2014.856267

    CAS  PubMed  Google Scholar 

  • Dalton TP, Chen Y, Schneider SN, Nebert DW, Shertzer HG (2004) Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med 37:1511–1526. doi:10.1016/j.freeradbiomed.2004.06.040

    CAS  PubMed  Google Scholar 

  • D’Emmanuele di Villa Bianca R, Sorrentino R, Maffia P, Mirone V, Imbimbo C, Fusco F, De Palma R, Ignarro LJ, Cirino G (2009) Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc Natl Acad Sci USA 106:4513–4518. doi:10.1073/pnas.0807974105

    PubMed Central  PubMed  Google Scholar 

  • Dickhout JG, Carlisle RE, Jerome DE, Mohammed-Ali Z, Jiang H, Yang G, Mani S, Garg SK, Banerjee R, Kaufman RJ, Maclean KN, Wang R, Austin RC (2012) Integrated stress response modulates cellular redox state via induction of cystathionine γ-lyase: cross-talk between integrated stress response and thiol metabolism. J Biol Chem 287:7603–7614. doi:10.1074/jbc.M111.304576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diwakar L, Ravindranath V (2007) Inhibition of cystathionine-gamma-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS. Neurochem Int 50:418–426. doi:10.1016/j.neuint.2006.09.014

    CAS  PubMed  Google Scholar 

  • Du J, Hui Y, Cheung Y, Bin G, Jiang H, Chen X, Tang C (2004) The possible role of hydrogen sulfide as a smooth muscle cell proliferation inhibitor in rat cultured cells. Heart Vessels 19:75–80. doi:10.1007/s00380-003-0743-7

    PubMed  Google Scholar 

  • Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, Olin AC, Plummer AL, Taylor DR, Applications ATSCoIoENOLFfC (2011) An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med 184:602–615. doi:10.1164/rccm.9120-11ST

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finkelstein JD, Kyle WE, Martin JJ, Pick A-M (1975) Activation of cystathionine synthase by adenosylmethionine and adenosylethionine. Biochem Biophys Res Commun 66:81–87

    CAS  PubMed  Google Scholar 

  • Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–1314. doi:10.1038/cdd.2009.107

    CAS  PubMed  Google Scholar 

  • Ge Y, Jensen TL, Matherly LH, Taub JW (2003) Transcriptional regulation of the cystathionine-beta -synthase gene in Down syndrome and non-Down syndrome megakaryocytic leukemia cell lines. Blood 101:1551–1557. doi:10.1182/blood-2002-07-2337

    CAS  PubMed  Google Scholar 

  • Ghibelli L, Coppola S, Fanelli C, Rotilio G, Civitareale P, Scovassi AI, Ciriolo MR (1999) Glutathione depletion causes cytochrome c release even in the absence of cell commitment to apoptosis. FASEB J 13:2031–2036

    CAS  PubMed  Google Scholar 

  • Gibeon D, Chung KF (2012) The investigation of severe asthma to define phenotypes. Clin Exp Allergy 42:678–692. doi:10.1111/j.1365-2222.2012.03959.x

    CAS  PubMed  Google Scholar 

  • Goodwin LR, Francom D, Dieken FP, Taylor JD, Warenycia MW, Reiffenstein R, Dowling G (1989) Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J Anal Toxicol 13:105–109

    CAS  PubMed  Google Scholar 

  • Hassan MI, Boosen M, Schaefer L, Kozlowska J, Eisel F, von Knethen A, Beck M, Hemeida RA, El-Moselhy MA, Hamada FM, Beck KF, Pfeilschifter J (2012) Platelet-derived growth factor-BB induces cystathionine γ-lyase expression in rat mesangial cells via a redox-dependent mechanism. Br J Pharmacol 166:2231–2242. doi:10.1111/j.1476-5381.2012.01949.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    CAS  PubMed  Google Scholar 

  • Hu LF, Wong PT, Moore PK, Bian JS (2007) Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J Neurochem 100:1121–1128. doi:10.1111/j.1471-4159.2006.04283.x

    CAS  PubMed  Google Scholar 

  • Hwang SY, Sarna LK, Siow YL, O K (2013) High-fat diet stimulates hepatic cystathionine β-synthase and cystathionine γ-lyase expression. Can J Physiol Pharmacol 91:913–919. doi:10.1139/cjpp-2013-0106

    CAS  PubMed  Google Scholar 

  • Ichinohe A, Kanaumi T, Takashima S, Enokido Y, Nagai Y, Kimura H (2005) Cystathionine beta-synthase is enriched in the brains of Down’s patients. Biochem Biophys Res Commun 338:1547–1550. doi:10.1016/j.bbrc.2005.10.118

    CAS  PubMed  Google Scholar 

  • Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H (2009) A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 11:205–214

    CAS  PubMed  Google Scholar 

  • Ishii I, Akahoshi N, Yu XN, Kobayashi Y, Namekata K, Komaki G, Kimura H (2004) Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem J 381:113–123. doi:10.1042/BJ20040243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jain SK, Bull R, Rains JL, Bass PF, Levine SN, Reddy S, McVie R, Bocchini JA (2010) Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid Redox Signal 12:1333–1337. doi:10.1089/ars.2009.2956

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jia G, Erickson RW, Choy DF, Mosesova S, Wu LC, Solberg OD, Shikotra A, Carter R, Audusseau S, Hamid Q, Bradding P, Fahy JV, Woodruff PG, Harris JM, Arron JR, Group BERSoBiC-rABS (2012) Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J Allergy Clin Immunol 130:647–654.e10. doi:10.1016/j.jaci.2012.06.025

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kabil O, Banerjee R (2014) Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal 20:770–782. doi:10.1089/ars.2013.5339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kabil O, Zhou Y, Banerjee R (2006) Human cystathionine β-synthase is a target for sumoylation. Biochemistry 45:13528–13536

    CAS  PubMed  Google Scholar 

  • Kabil O, Vitvitsky V, Xie P, Banerjee R (2011a) The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Redox Signal 15:363–372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kabil O, Weeks CL, Carballal S, Gherasim C, Alvarez B, Spiro TG, Banerjee R (2011b) Reversible heme-dependent regulation of human cystathionine β-synthase by a flavoprotein oxidoreductase. Biochemistry 50:8261–8263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kabil O, Motl N, Banerjee R (2014) HS and its role in redox signaling. Biochim Biophys Acta 1844:1355–1366. doi:10.1016/j.bbapap.2014.01.002

  • Kaneko Y, Kimura Y, Kimura H, Niki I (2006) L-cysteine inhibits insulin release from the pancreatic β-cell possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter. Diabetes 55:1391–1397

    CAS  PubMed  Google Scholar 

  • Kauppinen RA, Sihra TS, Nicholls DG (1987) Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochim Biophys Acta 930:173–178

    CAS  PubMed  Google Scholar 

  • Lee SW, Cheng Y, Moore PK, Bian JS (2007) Hydrogen sulphide regulates intracellular pH in vascular smooth muscle cells. Biochem Biophys Res Commun 358:1142–1147. doi:10.1016/j.bbrc.2007.05.063

    CAS  PubMed  Google Scholar 

  • Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FB, Whiteman M, Salto-Tellez M, Moore PK (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19:1196–1198. doi:10.1096/fj.04-3583fje

    CAS  PubMed  Google Scholar 

  • Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK (2009a) GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med 47:103–113. doi:10.1016/j.freeradbiomed.2009.04.014

    CAS  PubMed  Google Scholar 

  • Li L, Whiteman M, Moore PK (2009b) Dexamethasone inhibits lipopolysaccharide-induced hydrogen sulphide biosynthesis in intact cells and in an animal model of endotoxic shock. J Cell Mol Med 13:2684–2692. doi:10.1111/j.1582-4934.2008.00610.x

    PubMed  Google Scholar 

  • Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187. doi:10.1146/annurev-pharmtox-010510-100505

    CAS  PubMed  Google Scholar 

  • Li L, Xie R, Hu S, Wang Y, Yu T, Xiao Y, Jiang X, Gu J, Hu CY, Xu GY (2012) Upregulation of cystathionine beta-synthetase expression by nuclear factor-kappa B activation contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation. Mol Pain 8:89. doi:10.1186/1744-8069-8-89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maclean KN, Janošík M, Kraus E, Kožich V, Allen RH, Raab BK, Kraus JP (2002) Cystathionine β-synthase is coordinately regulated with proliferation through a redox‐sensitive mechanism in cultured human cells and Saccharomyces cerevisiae. J Cell Physiol 192:81–92

    CAS  PubMed  Google Scholar 

  • Maclean KN, Sikora J, Kožich V, Jiang H, Greiner LS, Kraus E, Krijt J, Overdier KH, Collard R, Brodsky GL, Meltesen L, Crnic LS, Allen RH, Stabler SP, Elleder M, Rozen R, Patterson D, Kraus JP (2010) A novel transgenic mouse model of CBS-deficient homocystinuria does not incur hepatic steatosis or fibrosis and exhibits a hypercoagulative phenotype that is ameliorated by betaine treatment. Mol Genet Metab 101:153–162. doi:10.1016/j.ymgme.2010.06.010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mani S, Li H, Untereiner A, Wu L, Yang G, Austin RC, Dickhout JG, Lhoták Š, Meng QH, Wang R (2013) Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127:2523–2534. doi:10.1161/CIRCULATIONAHA.113.002208

    CAS  PubMed  Google Scholar 

  • Manna P, Gungor N, McVie R, Jain SK (2014) Decreased cystathionine-γ-lyase (CSE) activity in livers of type 1 diabetic rats and peripheral blood mononuclear cells (PBMC) of type 1 diabetic patients. J Biol Chem 289:11767–11778. doi:10.1074/jbc.M113.524645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcotte P, Walsh C (1975) Active site-directed inactivation of cystathionine gamma-synthetase and glutamic pyruvic transaminase by propargylglycine. Biochem Biophys Res Commun 62:677–682

    CAS  PubMed  Google Scholar 

  • Markovic J, Borrás C, Ortega A, Sastre J, Viña J, Pallardó FV (2007) Glutathione is recruited into the nucleus in early phases of cell proliferation. J Biol Chem 282:20416–20424. doi:10.1074/jbc.M609582200

    CAS  PubMed  Google Scholar 

  • Miao X, Meng X, Wu G, Ju Z, Zhang HH, Hu S, Xu GY (2014) Upregulation of cystathionine-β-synthetase expression contributes to inflammatory pain in rat temporomandibular joint. Mol Pain 10:9. doi:10.1186/1744-8069-10-9

    PubMed Central  PubMed  Google Scholar 

  • Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H (2011a) Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J 439:479–485. doi:10.1042/BJ20110841

    CAS  PubMed  Google Scholar 

  • Mikami Y, Shibuya N, Kimura Y, Nagahara N, Yamada M, Kimura H (2011b) Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J Biol Chem 286:39379–39386. doi:10.1074/jbc.M111.298208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mikami Y, Shibuya N, Ogasawara Y, Kimura H (2013) Hydrogen sulfide is produced by cystathionine γ-lyase at the steady-state low intracellular Ca(2+) concentrations. Biochem Biophys Res Commun 431:131–135. doi:10.1016/j.bbrc.2013.01.010

    CAS  PubMed  Google Scholar 

  • Nagahara N (2013) Regulation of mercaptopyruvate sulfurtransferase activity via intrasubunit and intersubunit redox-sensing switches. Antioxid Redox Signal 19:1792–1802. doi:10.1089/ars.2012.5031

    CAS  PubMed  Google Scholar 

  • Nagahara N, Ito T, Kitamura H, Nishino T (1998) Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem Cell Biol 110:243–250

    CAS  PubMed  Google Scholar 

  • Nagahara N, Yoshii T, Abe Y, Matsumura T (2007) Thioredoxin-dependent enzymatic activation of mercaptopyruvate sulfurtransferase. An intersubunit disulfide bond serves as a redox switch for activation. J Biol Chem 282:1561–1569. doi:10.1074/jbc.M605931200

    CAS  PubMed  Google Scholar 

  • Oh GS, Pae HO, Lee BS, Kim BN, Kim JM, Kim HR, Jeon SB, Jeon WK, Chae HJ, Chung HT (2006) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41:106–119. doi:10.1016/j.freeradbiomed.2006.03.021

    CAS  PubMed  Google Scholar 

  • Okamoto M, Yamaoka M, Takei M, Ando T, Taniguchi S, Ishii I, Tohya K, Ishizaki T, Niki I, Kimura T (2013) Endogenous hydrogen sulfide protects pancreatic beta-cells from a high-fat diet-induced glucotoxicity and prevents the development of type 2 diabetes. Biochem Biophys Res Commun 442:227–233. doi:10.1016/j.bbrc.2013.11.023

    CAS  PubMed  Google Scholar 

  • Patel P, Vatish M, Heptinstall J, Wang R, Carson RJ (2009) The endogenous production of hydrogen sulphide in intrauterine tissues. Reprod Biol Endocrinol 7:10. doi:10.1186/1477-7827-7-10

    PubMed Central  PubMed  Google Scholar 

  • Peh MT, Anwar AB, Ng DS, Atan MS, Kumar SD, Moore PK (2014) Effect of feeding a high fat diet on hydrogen sulfide (H2S) metabolism in the mouse. Nitric Oxide 41:138–145. doi:10.1016/j.niox.2014.03.002

    CAS  PubMed  Google Scholar 

  • Peter EA, Shen X, Shah SH, Pardue S, Glawe JD, Zhang WW, Reddy P, Akkus NI, Varma J, Kevil CG (2013) Plasma free H2S levels are elevated in patients with cardiovascular disease. J Am Heart Assoc 2:e000387. doi:10.1161/JAHA.113.000387

    PubMed Central  PubMed  Google Scholar 

  • Pfeffer M, Ressler C (1967) Beta-cyanoalanine, an inhibitor of rat liver cystathionase. Biochem Pharmacol 16:2299–2308

    CAS  PubMed  Google Scholar 

  • Prudova A, Bauman Z, Braun A, Vitvitsky V, Lu SC, Banerjee R (2006) S-adenosylmethionine stabilizes cystathionine β-synthase and modulates redox capacity. Proc Natl Acad Sci USA 103:6489–6494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puranik M, Weeks CL, Lahaye D, Kabil Ö, Taoka S, Nielsen SB, Groves JT, Banerjee R, Spiro TG (2006) Dynamics of carbon monoxide binding to cystathionine β-synthase. J Biol Chem 281:13433–13438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramasamy S, Singh S, Taniere P, Langman MJ, Eggo MC (2006) Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation. Am J Physiol Gastrointest Liver Physiol 291:G288–G296. doi:10.1152/ajpgi.00324.2005

    CAS  PubMed  Google Scholar 

  • Ratnam S, Maclean KN, Jacobs RL, Brosnan ME, Kraus JP, Brosnan JT (2002) Hormonal regulation of cystathionine beta-synthase expression in liver. J Biol Chem 277:42912–42918. doi:10.1074/jbc.M206588200

    CAS  PubMed  Google Scholar 

  • Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126. doi:10.1056/NEJM199901143400207

    CAS  PubMed  Google Scholar 

  • Roy A, Khan AH, Islam MT, Prieto MC, Majid DS (2012) Interdependency of cystathione γ-lyase and cystathione β-synthase in hydrogen sulfide-induced blood pressure regulation in rats. Am J Hypertens 25:74–81. doi:10.1038/ajh.2011.149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saito J, Zhang Q, Hui C, Macedo P, Gibeon D, Menzies-Gow A, Bhavsar PK, Chung KF (2013) Sputum hydrogen sulfide as a novel biomarker of obstructive neutrophilic asthma. J Allergy Clin Immunol 131:232–234.e1-3. doi:10.1016/j.jaci.2012.10.005

    CAS  PubMed  Google Scholar 

  • Schnedl WJ, Ferber S, Johnson JH, Newgard CB (1994) STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes 43:1326–1333

    CAS  PubMed  Google Scholar 

  • Searcy DG, Lee SH (1998) Sulfur reduction by human erythrocytes. J Exp Zool 282:310–322

    CAS  PubMed  Google Scholar 

  • Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012) Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell 45:13–24. doi:10.1016/j.molcel.2011.10.021

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H (2009a) Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146:623–626. doi:10.1093/jb/mvp111

    CAS  PubMed  Google Scholar 

  • Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009b) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714

    CAS  PubMed  Google Scholar 

  • Singh S, Banerjee R (2011) PLP-dependent H(2)S biogenesis. Biochim Biophys Acta 1814:1518–1527. doi:10.1016/j.bbapap.2011.02.004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steegborn C, Clausen T, Sondermann P, Jacob U, Worbs M, Marinkovic S, Huber R, Wahl MC (1999) Kinetics and inhibition of recombinant human cystathionine gamma-lyase. Toward the rational control of transsulfuration. J Biol Chem 274:12675–12684

    CAS  PubMed  Google Scholar 

  • Stipanuk MH (1986) Metabolism of sulfur-containing amino acids. Annu Rev Nutr 6:179–209

    CAS  PubMed  Google Scholar 

  • Sun YG, Cao YX, Wang WW, Ma SF, Yao T, Zhu YC (2008) Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc Res 79:632–641. doi:10.1093/cvr/cvn140

    CAS  PubMed  Google Scholar 

  • Sun Q, Collins R, Huang S, Holmberg-Schiavone L, Anand GS, Tan CH, van-den-Berg S, Deng LW, Moore PK, Karlberg T, Sivaraman J (2009) Structural basis for the inhibition mechanism of human cystathionine gamma-lyase, an enzyme responsible for the production of H(2)S. J Biol Chem 284:3076–3085. doi:10.1074/jbc.M805459200

    CAS  PubMed  Google Scholar 

  • Szabó C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935. doi:10.1038/nrd2425

    PubMed  Google Scholar 

  • Szabó G, Veres G, Radovits T, Gero D, Módis K, Miesel-Gröschel C, Horkay F, Karck M, Szabó C (2011) Cardioprotective effects of hydrogen sulfide. Nitric Oxide 25:201–210. doi:10.1016/j.niox.2010.11.001

    PubMed Central  PubMed  Google Scholar 

  • Takano N, Peng YJ, Kumar GK, Luo W, Hu H, Shimoda LA, Suematsu M, Prabhakar NR, Semenza GL (2014) Hypoxia-inducible factors regulate human and rat cystathionine β-synthase gene expression. Biochem J 458:203–211. doi:10.1042/BJ20131350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanase S, Morino Y (1976) Irreversible inactivation of aspartate aminotransferases during transamination with L-propargylglycine. Biochem Biophys Res Commun 68:1301–1308

    CAS  PubMed  Google Scholar 

  • Taoka S, Banerjee R (2001) Characterization of NO binding to human cystathionine β-synthase: possible implications of the effects of CO and NO binding to the human enzyme. J Inorg Biochem 87:245–251

    CAS  PubMed  Google Scholar 

  • Teague B, Asiedu S, Moore PK (2002) The smooth muscle relaxant effect of hydrogen sulfide in vitro: evidence for a pysiological role to control intestinal contractility. Br J Pharmacol 137:139–145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tian M, Wang Y, Lu YQ, Yan M, Jiang YH, Zhao DY (2012) Correlation between serum H2S and pulmonary function in children with bronchial asthma. Mol Med Rep 6:335–338. doi:10.3892/mmr.2012.904

    PubMed  Google Scholar 

  • Wallace JL, Dicay M, McKnight W, Martin GR (2007) Hydrogen sulfide enhances ulcer healing in rats. FASEB J 21:4070–4076. doi:10.1096/fj.07-8669com

    CAS  PubMed  Google Scholar 

  • Wallach DP (1961) Studies on the GABA pathway. I. The inhibition of gamma-aminobutyric acid-alpha-ketoglutaric acid transaminase in vitro and in vivo by U-7524 (amino-oxyacetic acid). Biochem Pharmacol 5:323–331

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhao X, Jin H, Wei H, Li W, Bu D, Tang X, Ren Y, Tang C, Du J (2009) Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 29:173–179. doi:10.1161/ATVBAHA.108.179333

    CAS  PubMed  Google Scholar 

  • Wang M, Guo Z, Wang S (2012a) Cystathionine gamma-lyase expression is regulated by exogenous hydrogen peroxide in the mammalian cells. Gene Expr 15:235–241

    PubMed  Google Scholar 

  • Wang Y, Qu R, Hu S, Xiao Y, Jiang X, Xu GY (2012b) Upregulation of cystathionine β-synthetase expression contributes to visceral hyperalgesia induced by heterotypic intermittent stress in rats. PLoS ONE 7:e53165. doi:10.1371/journal.pone.0053165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang M, Guo Z, Wang S (2014) The binding site for the transcription factor, NF-κB, on the cystathionine γ-lyase promoter is critical for LPS-induced cystathionine γ-lyase expression. Int J Mol Med 34:639–645. doi:10.3892/ijmm.2014.1788

    PubMed  Google Scholar 

  • Watanabe M, Osada J, Aratani Y, Kluckman K, Reddick R, Malinow MR, Maeda N (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci 92:1585–1589

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu N, Siow YL, O K (2010) Ischemia/reperfusion reduces transcription factor Sp1-mediated cystathionine beta-synthase expression in the kidney. J Biol Chem 285:18225–18233. doi:10.1074/jbc.M110.132142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu S, Liu Z, Liu P (2014a) Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis. Int J Cardiol 172:313–317. doi:10.1016/j.ijcard.2014.01.068

    PubMed  Google Scholar 

  • Xu Y, Du HP, Li J, Xu R, Wang YL, You SJ, Liu H, Wang F, Cao YJ, Liu CF, Hu LF (2014b) Statins upregulate cystathionine γ-lyase transcription and H2S generation via activating Akt signaling in macrophage. Pharmacol Res 87C:18–25. doi:10.1016/j.phrs.2014.06.006

    Google Scholar 

  • Yadav PK, Yamada K, Chiku T, Koutmos M, Banerjee R (2013) Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J Biol Chem 288:20002–20013. doi:10.1074/jbc.M113.466177

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan SK, Chang T, Wang H, Wu L, Wang R, Meng QH (2006) Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochem Biophys Res Commun 351:485–491. doi:10.1016/j.bbrc.2006.10.058

    CAS  PubMed  Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590. doi:10.1126/science.1162667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang G, Tang G, Zhang L, Wu L, Wang R (2011) The pathogenic role of cystathionine γ-lyase/hydrogen sulfide in streptozotocin-induced diabetes in mice. Am J Pathol 179:869–879. doi:10.1016/j.ajpath.2011.04.028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yin P, Zhao C, Li Z, Mei C, Yao W, Liu Y, Li N, Qi J, Wang L, Shi Y, Qiu S, Fan J, Zha X (2012) Sp1 is involved in regulation of cystathionine γ-lyase gene expression and biological function by PI3K/Akt pathway in human hepatocellular carcinoma cell lines. Cell Signal 24:1229–1240. doi:10.1016/j.cellsig.2012.02.003

    CAS  PubMed  Google Scholar 

  • Yoshihara E, Fujimoto S, Inagaki N, Okawa K, Masaki S, Yodoi J, Masutani H (2010) Disruption of TBP-2 ameliorates insulin sensitivity and secretion without affecting obesity. Nat Commun 1:127. doi:10.1038/ncomms1127

    PubMed Central  PubMed  Google Scholar 

  • Yusuf M, Kwong Huat BT, Hsu A, Whiteman M, Bhatia M, Moore PK (2005) Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochem Biophys Res Commun 333:1146–1152. doi:10.1016/j.bbrc.2005.06.021

    CAS  PubMed  Google Scholar 

  • Zhang L, Yang G, Tang G, Wu L, Wang R (2011) Rat pancreatic level of cystathionine γ-lyase is regulated by glucose level via specificity protein 1 (SP1) phosphorylation. Diabetologia 54:2615–2625. doi:10.1007/s00125-011-2187-4

    CAS  PubMed  Google Scholar 

  • Zhang H, Guo C, Wu D, Zhang A, Gu T, Wang L, Wang C (2012) Hydrogen sulfide inhibits the development of atherosclerosis with suppressing CX3CR1 and CX3CL1 expression. PLoS ONE 7:e41147. doi:10.1371/journal.pone.0041147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang G, Wang P, Yang G, Cao Q, Wang R (2013) The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and inflammation in a mouse model of asthma. Am J Pathol 182:1188–1195. doi:10.1016/j.ajpath.2012.12.008

    CAS  PubMed  Google Scholar 

  • Zhao W, Zhang J, Lu Y, Wang R (2001a) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao W, Zhang J, Lu Y, Wang R (2001b) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20:6008–6016. doi:10.1093/emboj/20.21.6008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Y, Yu J, Lei X, Wu J, Niu Q, Zhang Y, Liu H, Christen P, Gehring H, Wu F (2013) High-throughput tandem-microwell assay identifies inhibitors of the hydrogen sulfide signaling pathway. Chem Commun (Camb) 49:11782–11784. doi:10.1039/c3cc46719h

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Keith Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huang, C.W., Moore, P.K. (2015). H2S Synthesizing Enzymes: Biochemistry and Molecular Aspects. In: Moore, P., Whiteman, M. (eds) Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide. Handbook of Experimental Pharmacology, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-18144-8_1

Download citation

Publish with us

Policies and ethics