Skip to main content

Compliance Modeling and Error Compensation of a 3-Parallelogram Lightweight Robotic Arm

  • Conference paper
  • First Online:

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 33))

Abstract

This paper presents compliance modeling and error compensation for lightweight robotic arms built with parallelogram linkages, i.e., \(\varPi\) joints. The Cartesian stiffness matrix is derived using the virtual joint method. Based on the developed stiffness model, a method to compensate the compliance error is introduced, being illustrated with a 3-parallelogram robot in the application of pick-and-place operation. The results show that this compensation method can effectively improve the operation accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. http://www.universal-robots.com/GB/Cases.aspx

  2. Ivlev, O., et al.: Rehabilitation robots FRIEND-I and FRIEND-II with the dexterous lightweight manipulator. Technol. Disabil. 17(2), 111–123 (2005)

    Google Scholar 

  3. Bien, Z., et al.: Integration of a rehabilitation robotic system (KARES II) with human-friendly man-machine interaction units. Auto. Robots 16(2), 165–191 (2004)

    Article  Google Scholar 

  4. Zhuang, H.: Self-calibration of parallel mechanisms with a case study on Stewart platforms. IEEE Trans. Robot. Autom. 13(3), 387–397 (1997)

    Article  Google Scholar 

  5. Klimchik, A., et al.: Compliance error compensation technique for parallel robots composed of non-perfect serial chains. Robot. Comput.-Int. Manuf. 29(2), 385–393 (2013)

    Article  Google Scholar 

  6. Salisbury, J.: Active stiffness control of a manipulator in cartesian coordinates. In: 19th IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes, vol. 19 pp. 95–100. New Mexico (1980)

    Google Scholar 

  7. Chen, S.-F., Kao, I.: Conservative congruence transformation for joint and Cartesian stiffness matrices of robotic hands and fingers. Inter. J. Robot. Res. 19, 835–847 (2000)

    Article  Google Scholar 

  8. Alici, G., Shirinzadeh, B.: Enhanced stiffness modeling, identification and characterization for robot manipulators. IEEE T. Robot. 21(4), 554–564 (2005)

    Article  Google Scholar 

  9. ​Quennouelle, C., et al.: Stiffness matrix of compliant parallel mechanisms. In: Lenarčič, J., Wenger, P. (eds.) Advances in Robot Kinematics: Analysis and Design, pp. 331–341. Springer, Netherlands (2008)

    Google Scholar 

  10. Pashkevich, A., et al.: Enhanced stiffness modeling of manipulators with passive joints. Mech. Mach. Theory 46(5), 662–679 (2011)

    Google Scholar 

  11. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices, Trans. ASME. J. Appl. Mech. 22, 215–221 (1995)

    MathSciNet  Google Scholar 

  12. Wu, G., et. al.: Mobile platform center shift in spherical parallel manipulators with flexible limbs. Mech. Mach. Theory. 75, 12–26 (2014)

    Google Scholar 

  13. International Standard: Manipulating Industrial Robots-Performance Criteria and Related Test Methods ISO 9283: 1998

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Palle Huus, Dennis Andersen, Nikolai Svalebæk, Nikolai Hansen, Mathias Kristensen and Mathias Jungersen for prototyping the robot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanglei Wu .

Editor information

Editors and Affiliations

Appendix

Appendix

The force Jacobian matrix is expressed as

$${\mathbf{J}}_{\theta } = \left[ {\begin{array}{*{20}c} {\hat{\vec{\$}}}_{\theta ,1} &{{\hat{\vec{{\$ }}}}_{\theta ,2} } & {{\hat{\vec{{\$}}}}_{21} } & \ldots & {{\hat{\vec{{\$ }}}}_{26} } & {{\hat{\vec{{\$ }}}}_{\theta ,3} } & {{\hat{\vec{{\$ }}}}_{31} } & \ldots & {{\hat{\vec{{\$}}}}_{36} } \\ \end{array} } \right] \in {\vec{R}}^{6 \times 15}$$
(21)

with the unit screws

$$\begin{aligned} & {\varvec {\mathbf{\hat{\$ }}}}_{\theta ,1} = \left[ {\begin{array}{*{20}c} {\mathbf{k}} \\ { - {\mathbf{q}} \times {\mathbf{k}}} \\ \end{array} } \right];{\kern 1pt} {\varvec{\mathbf{\hat{\$ }}}}_{\theta ,2} = \left[ {\begin{array}{*{20}c} {{\mathbf{z}}_{1} } \\ {{\mathbf{q}}_{1} \times {\mathbf{z}}_{1} } \\ \end{array} } \right];{\kern 1pt} {\varvec{\mathbf{\hat{\$ }}}}_{\theta ,3} = \left[ {\begin{array}{*{20}c} {{\mathbf{z}}_{2} } \\ {{\mathbf{q}}_{2} \times {\mathbf{z}}_{2} } \\ \end{array} } \right];{\kern 1pt} {\varvec{\mathbf{\hat{\$ }}}}_{n1} = \left[ {\begin{array}{*{20}c} {{\mathbf{x}}_{n - 1} } \\ {{\mathbf{q}}_{n} \times {\mathbf{x}}_{n - 1} } \\ \end{array} } \right] \hfill \\ & {\varvec{\mathbf{\hat{\$ }}}}_{n2} = \left[ {\begin{array}{*{20}c} {{\mathbf{y}}_{n - 1} } \\ {{\mathbf{q}}_{n} \times {\mathbf{y}}_{n - 1} } \\ \end{array} } \right];{\kern 1pt} {\varvec{\mathbf{\hat{\$ }}}}_{n3} = \left[ {\begin{array}{*{20}c} {{\mathbf{z}}_{n - 1} } \\ {{\mathbf{q}}_{n} \times {\mathbf{z}}_{n - 1} } \\ \end{array} } \right];{\kern 1pt} {\varvec{\mathbf{\hat{\$ }}}}_{n4} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {{\mathbf{x}}_{n - 1} } \\ \end{array} } \right];{\kern 1pt} {\varvec{\mathbf{\hat{\$ }}}}_{n5} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {{\mathbf{y}}_{n - 1} } \\ \end{array} } \right];{\kern 1pt} {\varvec{\mathbf{\hat{\$ }}}}_{n6} = \left[ {\begin{array}{*{20}c} {\mathbf{0}} \\ {{\mathbf{z}}_{n - 1} } \\ \end{array} } \right] \hfill \\ \end{aligned}$$
(22)

and

$${\mathbf{x}}_{n} = {\mathbf{R}}_{n} {\mathbf{i}};\quad {\mathbf{y}}_{n} = {\mathbf{R}}_{n} {\mathbf{j}};\quad {\mathbf{z}}_{n} = {\mathbf{R}}_{n} {\mathbf{k}};\quad {\mathbf{q}}_{n} = {\mathbf{p}}_{n} - {\mathbf{q}}$$
(23)

where \({\mathbf{R}}_{n}\) and \({\mathbf{p}}_{n}\), \(n = 1,{\kern 1pt} 2,{\kern 1pt} 3\), respectively, are the rotation matrix and position vector extracted from \(\prod\nolimits_{i = 1}^{n} {^{i - 1} {\mathbf{A}}_{i} }\) of Eq. (1). Moreover, vectors \({\mathbf{i}}\), \({\mathbf{j}}\) and \({\mathbf{k}}\) represent the unit vectors of \(x\)-, \(y\)- and \(z\)-axis, respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wu, G., Guo, S., Bai, S. (2015). Compliance Modeling and Error Compensation of a 3-Parallelogram Lightweight Robotic Arm. In: Bai, S., Ceccarelli, M. (eds) Recent Advances in Mechanism Design for Robotics. Mechanisms and Machine Science, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-18126-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18126-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18125-7

  • Online ISBN: 978-3-319-18126-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics